Skip to main content
Log in

The combination of ITS2 and psbA-trnH region is powerful DNA barcode markers for authentication of medicinal Terminalia plants from Thailand

  • Note
  • Published:
Journal of Natural Medicines Aims and scope Submit manuscript

Abstract

The dried fruits of Terminalia plant (Combretaceae) called “Samo” have been used as herbal medicine in Thai traditional medicine. Four “Samo” crude drugs, namely, Samo thai, Samo thed, Samo dee-ngu, and Samo phiphek, are used as the main ingredients in Triphala and Trisamo recipes. Their commercial products are available in processed and powdered form, but are difficult to authenticate by conventional methods. In this study, we aimed to discriminate species of genus Terminalia for the identification of their crude drugs by a DNA barcoding technique. A total of 208 closely related nucleotide sequences were obtained from nine Terminalia species collected from Thailand and the DDBJ/EMBL/GenBank database. An effective DNA barcode marker was selected from six DNA loci (matK, rbcL, psbA-trnH, ITS, ITS1, and ITS2) and their two-locus combination. All sequences were analyzed by three major methods: (1) BLAST search; (2) the genetic divergence method using Kimura 2-parameter (K2P) distance matrices; and (3) tree topology analysis based on the neighbor-joining method. Comparison of the six candidate DNA loci indicated that ITS identified Terminalia with 100% accuracy at the species and genus levels in the BLAST1 method. ITS2 showed the highest K2P variability. The data from the single markers and the two-locus combinations revealed that only the two-locus combinations, namely, the combinations of rbcL, ITS, ITS1, and ITS2 with psbA-trnH, clearly discriminated all the species. From the results of DNA sequence analysis and the three methods, ITS2 is recommended for the identification of Terminalia species to supplement psbA-trnH.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3

References

  1. Mabberley DJ (2017) Mabberley’s plant-book: a portable dictionary of plants, their classification and uses. Cambridge University Press, Cambridge

    Google Scholar 

  2. Turland NJ, Chen J. Flora of China vol. 13 Combretaceae. http://www.efloras.org/florataxon.aspx?flora_id=2&taxon_id=10211. Accessed 15 Feb 2015

  3. Nanakorn W (1985) The genus Terminalia (Combretaceae) in Thailand. Thai For Bull 15:59–107

    Google Scholar 

  4. Nariya M, Shukla V, Jain S, Ravishankar B (2009) Comparison of enteroprotective efficacy of Triphala formulations (Indian Herbal Drug) on methotraxate-induced small intestinal damage in rats. Phytother Res 23:1092–1098

    PubMed  Google Scholar 

  5. National Drug Committee (2018) National list of essential medicines 2018. Ministry of Public Health, Nonthaburi (in Thai)

    Google Scholar 

  6. Intharuksa A, Ando H, Miyake K, Sirisa-ard P, Mikage M, Sasaki Y (2016) Molecular analysis of Terminalia spp. distributed in Thailand and authentication of crude drugs from Terminalia plants. Biol Pharm Bull 39(4):492–501

    CAS  PubMed  Google Scholar 

  7. Nithaniyal S, Parani M (2016) Evaluation of chloroplast and nuclear DNA barcodes for species identification of Terminalia L. Biochem Syst Ecol 68:223–229

    CAS  Google Scholar 

  8. Deshmukh VP, Thakare PV, Chaudhari US, Gawanda PV, Undal VS (2009) Assessment of genetic diversity among Terminalia species using RAPD markers. GJBB 4(2):70–74

    CAS  Google Scholar 

  9. Sarwat M, Das S, Srivastava PS (2011) Estimation of genetic diversity and evaluation of relatedness through molecular markers among medicinally important trees: Terminalia arjuna, T. chebula and T. bellirica. Mol Biol Rep 38:5025–5036

    CAS  PubMed  Google Scholar 

  10. Dangi B, Jain R, Kachhwaha S, Kothari SL (2012) Assessment of diversity in Terminalia bellirica Roxb. using morphological, phytochemical and molecular markers. Natl Acad Sci Lett 35(1):27–35

    Google Scholar 

  11. Herbert PDN, Gregory TR (2005) The promise of DNA barcoding for taxonomy. Syst Biol 54(5):852–859

    Google Scholar 

  12. Hajibabaei M, Singer GAC, Hebert PDN, Hickey DA (2007) DNA barcoding: how it complements taxonomy, molecular phylogenetics and population genetics. Trends Genet 23(4):167–172

    CAS  PubMed  Google Scholar 

  13. Milstein D, Saunders GW (2012) DNA barcoding of Canadian Ahnfeltiales (Rhodophyta) reveals a new species-Ahnfeltia borealis sp. nov. Phycologia 51(3):247–259

    Google Scholar 

  14. Kress WJ, Wurdack KJ, Zimmer EA, Weigt LA, Janzen DH (2005) Use of DNA barcodes to identify flowering plants. Proc Natl Acad Sci USA 102(23):8369–8378

    CAS  PubMed  PubMed Central  Google Scholar 

  15. Singh HK, Parveen I, Raghuvanshi S, Babbar SB (2012) The loci recommend as universal barcodes for plants on the basis of floristic studies may not work with congeneric species as exemplified by DNA barcoding of Dendrobium species. BMC Res Notes 5(42):1–11

    Google Scholar 

  16. Roy S, Tyagi A, Shukla V, Kumar A, Singh UM, Chaudhary LB, Datt B, Bag SK, Singh PK, Nair NK, Husain T, Tuli R (2010) Universal plant DNA barcode loci may not work in complex groups: a case study with Indian Berberis species. PLoS One 10(5):1–14

    Google Scholar 

  17. China Plant BOL Group (2011) Comparative analysis of a large dataset indicates that internal transcribed spacer (ITS) should be incorporated into the core barcode for seed plants. Proc Natl Acad Sci USA 108(49):19641–19646

    PubMed Central  Google Scholar 

  18. De Boer HJ, Ichim MC, Newmaster SG (2015) DNA barcoding and pharmacovigilance of herbal medicine. Drug Saf 38(7):611–620

    PubMed  Google Scholar 

  19. Pfundstein B, El Desouky SK, Hull WE, Haubner R, Erben G, Owen RW (2010) Polyphenolic compounds in the fruits of Egyptian medicinal plants (Terminalia bellerica, Terminalia chebula and Terminalia horrida): characterization, quantitation, and determination of antioxidant capacities. Phytochemistry 71:1132–1148

    CAS  PubMed  Google Scholar 

  20. Ministry of Public Health (2018) Thai Herbal Pharmacopoeia 2018. Keawjawjom Printing & Publishing Suan Sunandha Rajabhat University, Bangkok

    Google Scholar 

  21. Kitaoka F, Kakiuchi N, Long C, Itoga M, Yoshimatsu H, Mitsue A, Atsumi T, Mouri C, Mikage M (2009) Difference of ITS sequence of Akebia plant growing in various parts of Japan. J Nat Med 63(3):368–374

    CAS  PubMed  Google Scholar 

  22. Fay FM, Bayer C, Alverson WS, Bruijin AY, Chase MW (1998) Plastid rbcL sequence data indicate a close affinity between Diegodendron and Bixa. Taxon 47(1):43–50

    Google Scholar 

  23. Hamilton MB (1999) Four primer pairs for the amplification of chloroplast intergenic regions with intraspecific variation. Mol Ecol 8:521–523

    CAS  PubMed  Google Scholar 

  24. Kuzmina ML, Johnson KL, Barron HR, Hebert PDN (2012) Identification of the vascular plants of Churchill, Manitoba, using a DNA barcode library. BMC Ecol 12(25):1–11

    Google Scholar 

  25. Maurin O, Chase MW, Jordann M, Van Der Bank M (2010) Phylogenetic relationships of Combretaceae inferred from nuclear and plastid DNA sequence data: implications for genetic classification. Bot J Linn Soc 162:453–476

    Google Scholar 

  26. Toyama H, Kajisa T, Tagane S, Mase K, Chhang P, Samreth V, Ma V, Sokh H, Ichihashi R, Oroda Y, Mizoue N, Yahara T (2015) Effects of logging and recruitment on community phylogenic structure in 32 permanent forest plots of Kampong Thom, Cambodia. Philos Trans R Soc Lond B Biol Sci 370(1662):1–13

    Google Scholar 

  27. Mishra P, Nagireddy A, Sundaresan V. DNA Barcoding in genus Terminalia in India (unpublished)

  28. Sathishkumar R, Dhivya S, Dhivya S, Rajeevkumar S, Harish MC, Varghese PI, Balamurugan S, Kayalvizhi M (2010) Authentication of Herbal Product-Churna (unpublished)

  29. Tan F, Shi S, Zhong Y, Gong X, Wang Y (2002) Phylogenetic relationships of Combretoideae (Combretaceae) inferred from plastid, nuclear gene and spacer sequences. J Plant Res 115:475–481

    PubMed  Google Scholar 

  30. Tripathi AM, Tyagi A, Kumar A, Singh A, Singh S, Chaudhury B, Roy S (2013) The internal transcribed spacer (ITS) region and trnH-psbA are suitable candidate loci for DNA barcoding of tropical tree species of India. PLoS One 8(2):1–11

    Google Scholar 

  31. Huang XC, Ci XQ, Conran JG, Li J (2015) Application of DNA barcodes in Asian tropical tree—a case study from Xishuangbanna nature reserve, Southwest China. PLOS One 10:1–17

    Google Scholar 

  32. Abbott JR, Neubig KM, Whitten WM, Williams NH (2016) DNA barcoding the flora of Florida: invasive species. https://www.floridamuseum.ufl.edu/herbarium/research/barcoding/ffwcc-uf8162-report.htm. Accessed July 7 2018

  33. Conti E, Litt A, Systsma K (1996) Circumscription of Myrtales and their relationships to other Rosids: evidence from rbcL sequence data. Am J Bot 83(2):221–233

    Google Scholar 

  34. Maurin O, Davies TJ, Yessoufou K, Daru BH, Bezang BS, Mankga LT, Van Der Bank M (2013) Human population density correlates with phylogenetic diversity and plant vulnerability in southern Africa. S Afr J Bot 86:166

    Google Scholar 

  35. Maurin O, Gere J, Van Der Bank M, Boatwright JS (2017) The inclusion of Anogeissus, Buchenavia and Pteleopsis in Terminalia (Combretaceae: Terminaliinae). Bot J Linn Soc 184(3):312–325

    Google Scholar 

  36. Ross HA, Murugan S, Sibon LWL (2008) Testing the reliability of genetic methods of species identification via simulation. Syst Biol 57(2):216–230

    PubMed  Google Scholar 

  37. CBOL Plant Working Group (2009) A DNA barcode for land plants. Proc Natl Acad Sci USA 106(31):12794–12797

    PubMed Central  Google Scholar 

  38. Kress WJ, Erickson DL (2007) A two-locus global DNA barcode for land plants: the coding rbcL gene complements the non-coding trnH-psbA spacer region. PLOS One 2(6):e508

    PubMed  PubMed Central  Google Scholar 

  39. Techen N, Parveen I, Pan Z, Khan IA (2014) DNA barcoding of medicinal plant material for identification. Curr Opin Biotechnol 25:103–110

    CAS  PubMed  Google Scholar 

  40. Chen S, Yao H, Han J, Lui C, Song J, Shi L, Gao T, Pang X, Luo K, Li Y, Li W, Jia X, Lin Y, Leon C (2010) Validation of the ITS2 region as a novel DNA barcode for identifying medicinal plant species. PLoS One 5(1):e8613

    PubMed  PubMed Central  Google Scholar 

  41. Mei Q, Chen X, Xiang L, Liu Y, Su Y, Gao Y, Dai W, Dong P, Chen S (2016) DNA barcode of identifying folium Artemisiae Argyi from counterfeits. Biol Pharm Bull 39(9):1531–1537

    CAS  PubMed  Google Scholar 

  42. Chao Z, Zeng W, Liao J, Liu L, Liang Z, Li X (2014) DNA barcoding Chinese medicinal Bupleurum. Phytomedicine 21:1767–1773

    CAS  PubMed  Google Scholar 

  43. Lui Z, Zeng X, Yang D, Chu G, Yuan Z, Chen S (2012) Applying DNA barcodes for identification of plant species in the family Araliaceae. Gene 499:76–80

    Google Scholar 

  44. Gao T, Yao H, Song J, Liu C, Zhu Y, Ma X, Pang X, Xu H, Chen S (2010) Identification of medicinal plants in the family Fabaceae using a potential DNA barcode ITS2. J Ethnopharmacol 130:116–121

    CAS  PubMed  Google Scholar 

  45. Zhang Z, Zhang Y, Zhang Z, Yao H, Liu H, Zhang B, Liao Y (2016) Comparative analysis of DNA barcoding and HPLC fingerprint to trace species of Phellodendri cortex, an important traditional Chinese medicine from multiple sources. Biol Pharm Bull 39(8):1325–1330

    CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Aekkhaluck Intharuksa or Yohei Sasaki.

Ethics declarations

Conflict of interest

The authors declare no conflicts of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Intharuksa, A., Sasaki, Y., Ando, H. et al. The combination of ITS2 and psbA-trnH region is powerful DNA barcode markers for authentication of medicinal Terminalia plants from Thailand. J Nat Med 74, 282–293 (2020). https://doi.org/10.1007/s11418-019-01365-w

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11418-019-01365-w

Keywords

Navigation