Skip to main content
Log in

Ageing impacts phenotypic flexibility in an air-acclimated amphibious fish

  • Original Paper
  • Published:
Journal of Comparative Physiology B Aims and scope Submit manuscript

Abstract

The ability to tolerate environmental change may decline as fishes age. We tested the hypothesis that ageing influences the scope for phenotypic flexibility in the mangrove rivulus (Kryptolebias marmoratus), an amphibious fish that transitions between two vastly different environments, water and land. We found that older fish (4–6 years old) exhibited marked signs of ageing; older fish were reproductively senescent, had reduced fin regenerative capacity and body condition, and exhibited atrophy of both oxidative and glycolytic muscle fibers relative to younger adult fish (1–2 years old). However, age did not affect routine O2 consumption. We then acclimated adult fish (1–6 years) to water (control) or air for 10 days to assess the scope for phenotypic flexibility in response to terrestrial exposure. In support of our hypothesis, we found that older air-acclimated fish had a diminished scope for gill remodeling relative to younger fish. We also found that older fish exhibited poorer terrestrial locomotor performance relative to younger adult fish, particularly when acclimated to air. Our results indicate that ageing diminishes skeletal muscle integrity and locomotor performance of amphibious fishes, and may, therefore, impair terrestrial foraging ability, predator avoidance, or dispersal across the terrestrial environment. Remarkably, older fish voluntarily left water to a similar degree as younger fish despite the age-related deterioration of traits important for terrestrial life.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  • Blanchard TS, Whitehead A, Dong YW, Wright PA (2019) Phenotypic flexibility in respiratory traits is associated with improved aerial respiration in an amphibious fish out of water. J Exp Biol 222:jeb186486

    Article  PubMed  PubMed Central  Google Scholar 

  • Borowiec BG, Darcy KL, Gillette DM, Scott GR (2015) Distinct physiological strategies are used to cope with constant hypoxia and intermittent hypoxia in killifish (Fundulus heteroclitus). J Exp Biol 218:1198–1211

    Article  PubMed  Google Scholar 

  • Brunt EM, Turko AJ, Scott GR, Wright PA (2016) Amphibious fish jump better on land after acclimation to a terrestrial environment. J Exp Biol 219:3204–3207

    Article  PubMed  Google Scholar 

  • Casellas J (2011) Inbred mouse strains and genetic stability: a review. Animal 5:1–7

    Article  CAS  PubMed  Google Scholar 

  • Clarke A, Johnston NM (1999) Scaling of metabolic rate with body mass and temperature in teleost fish. J Anim Ecol 68:893–905

    Article  Google Scholar 

  • Comfort A (1961) The longevity and mortality of a fish (Lebistes reticularis Peters) in captivity. Gerontologia 5:209–222

    Article  Google Scholar 

  • Cooper CA, Litwiller SL, Murrant CL, Wright PA (2012) Cutaneous vasoregulation during short- and long-term aerial acclimation in the amphibious mangrove rivulus, Kryptolebias marmoratus. Comp Biochem Physiol B 161:268–274

    Article  CAS  PubMed  Google Scholar 

  • Daxboeck C, Heming TA (1982) Bimodal respiration in the intertidal fish Xiphister astropurpureus (Kittlitz). Mar Behav Physiol 9:23–34

    Article  Google Scholar 

  • Ding L, Kuhne WW, Hinton DE, Song J, Dynan WS (2010) Quantifiable biomarkers of normal aging in the Japanese medaka fish (Oryzias latipes). PLoS One 5:e13287

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Du TY, Standen EM (2017) Phenotypic plasticity of muscle fiber type in the pectoral fins of Polypterus senegalus reared in a terrestrial environment. J Exp Biol 220:3406–3410

    Article  PubMed  Google Scholar 

  • Du SJ, Frenkel V, Kindschi G, Zohar Y (2001) Visualizing normal and defective bone development in zebrafish embryos using the fluorescent chromophore calcein. Dev Biol 238:239–246

    Article  CAS  PubMed  Google Scholar 

  • Frick NT, Wright PA (2002) Nitrogen metabolism and excretion in the mangrove killifish Rivulus marmoratus II. Significant ammonia volatilization in a teleost during air exposure. J Exp Biol 205:91–100

    CAS  PubMed  Google Scholar 

  • Froehlich JM, Fowler ZG, Galt NJ, Smith DL, Biga PR (2013) Sarcopenia and piscines: the case for indeterminate-growing fish as unique genetic model organisms in aging and longevity research. Front Genet 4:159

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Froese R (2006) Cube law, condition factor and weight-length relationships: history, meta-analysis and recommendations. J Appl Ichthyol 22:241–253

    Article  Google Scholar 

  • Fu C, Cau ZD, Fu SJ (2013) The effects of caudal fin amputation on metabolic interaction between digestion and locomotion in juveniles of three cyprinid fish species with different metabolic modes. Comp Biochem Physiol A 164:456–465

    Article  CAS  Google Scholar 

  • Gasparini C, Marino IAM, Boschetto C, Pilastro A (2010) Effect of male age on sperm traits and sperm competition success in the guppy (Poecilia reticulata). J Evol Biol 23:124–135

    Article  CAS  PubMed  Google Scholar 

  • Gavin TP, Ruster RS, Carrithers JA, Zwetsloot KA, Kraus RM, Evans CA, Knapp DJ, Drew JL, McCartney JS, Garry JP, Hickner RC (2007) No difference in the skeletal muscle angiogenic response to aerobic exercise training between young and aged men. J Physiol 585:231–239

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Gavin TP, Kraus RM, Carrithers JP, Robert G, Hickner C (2014) Ageing and the skeletal muscle angiogenic response to exercise in women. J Gerontol 70:1189–1197

    Article  CAS  Google Scholar 

  • Gems D, Partridge L (2013) Genetics of longevity in model organisms: debates and paradigm shifts. Annu Rev Physiol 75:621–644

    Article  CAS  PubMed  Google Scholar 

  • Gerhard GS, Kauffman EJ, Wang X, Stewart R, Moore JL, Kasales CJ, Demidenko E, Cheng KC (2002) Life spans and senescent phenotypes in two strains of Zebrafish (Danio rerio). Exp Gerontol 37:1055–1068

    Article  PubMed  Google Scholar 

  • Gilmour KM, Perry SF (2018) Conflict and compromise: using reversible remodeling to manage competing physiological demands at the fish gill. Physiology (Bethesda) 33:412–422

    CAS  Google Scholar 

  • Gordon MS, Boëtius I, Evans DH, McCarthy R, Oglesby LC (1969) Aspects of the physiology of terrestrial life in amphibious fishes. J Exp Biol 50:141–149

    Google Scholar 

  • Hartmann N, Reichwald K, Wittig I, Drose S, Schmeisser S, Luck C, Hahn C, Graf M, Gausmann U, Terzibasi E, Cellerino A, Ristow M, Brandt U, Platzer M, Englert C (2011) Mitochondrial DNA copy number and function decrease with age in the short-lived fish Nothobranchius furzeri. Aging Cell 10:824–831

    Article  CAS  PubMed  Google Scholar 

  • Hughes KA, Reynolds RM (2005) Evolutionary and mechanistic theories of aging. Annu Rev Entomol 50:421–445

    Article  CAS  PubMed  Google Scholar 

  • Johnston IA, Dunn J (1987) Temperature acclimation and metabolism in ectotherms with particular reference to teleost fish. Symp Soc Exp Biol 41:67–93

    CAS  PubMed  Google Scholar 

  • Johnston IA, Abercromby M, Vieira VLA, Sigursteindóttir RJ, Kristjánsson B, Sibthorpe D, Skúlason S (2004) Rapid evolution of muscle fibre number in post-glacial populations of Arctic charr. J Exp Biol 207:4343–4360

    Article  PubMed  Google Scholar 

  • Kim Y, Nam HG, Valenzano DR (2016) The short-lived African turquoise killifish: an emerging experimental model for ageing. Dis Mod Mech 9:115–129

    Article  Google Scholar 

  • Kirkwood TB (1977) Evolution of ageing. Nature 270:301–304

    Article  CAS  PubMed  Google Scholar 

  • Kirkwood TB (2005) Understanding the odd science of aging. Cell 120:437–447

    Article  CAS  PubMed  Google Scholar 

  • Koslow JA, Bell J, Virtue P, Smith DC (1995) Fecundity and its variation in orange roughy: effects of population density, condition, egg size, and senescence. J Fish Biol 47:1063–1080

    Article  Google Scholar 

  • Kotrschal A, Taborsky B (2010) Environmental change enhances cognitive abilities in fish. PLoS Biol 8:e1000351

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kwak S-E, Lee J-H, Zhang D, Song W (2018) Angiogenesis: focusing on the effects of exercise in ageing and cancer. J Exerc Nutrition Biochem 22:21–26

    Article  PubMed  PubMed Central  Google Scholar 

  • Lähteenvuo J, Rosenzweig A (2012) Effects of aging on angiogenesis. Circ Res 110:1252–1264

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lam K, Tsui T, Nakano K, Randall DJ (2006) Physiological adaptations of fishes to tropical intertidal environments. In: Val AL, Almeida-Val VMF, Randall DJ (eds) The physiology of tropical fishes. Academic Press, San Diego, pp 502–581

    Google Scholar 

  • Lemaître J-F, Berger V, Bonenfant C, Douhard M, Gamelon M, Plard F, Gaillard J-M (2015) Early-late life trade-offs and the evolution of ageing in the wild. Proc R Soc B 282:20150209

    Article  PubMed  PubMed Central  Google Scholar 

  • Lertkiatmongkol P, Liao D, Mei H, Hu Y, Newman PJ (2016) Endothelial functions of platelet/endothelial cell adhesion molecule-1 (CD31). Curr Opin Hematol 23:253–259

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lins LSF, Trojahn S, Sockell A, Yee M-C, Tatarenkov A, Bustamante CD, Earley RL, Kelley JL (2018) Whole-genome sequencing reveals the extent of heterozygosity in a preferentially self-fertilizing hermaphroditic vertebrate. Genome 61:241–247

    Article  CAS  PubMed  Google Scholar 

  • Livingston MD, Bhargav VV, Turko AJ, Wilson JM, Wright PA (2018) Widespread use of emersion and cutaneous ammonia excretion in Aplocheiloid killifishes. Proc R Soc B 285:20181496

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Maynard S, Fang EF, Scheibye-Knudsen M, Croteau DL, Bohr VA (2015) DNA damage, DNA, repair, aging, and neurodegeneration. Cold Spring Harb Perspect Med 5:025130

    Article  CAS  Google Scholar 

  • Moczek AP, Sultan S, Foster S, Ledón-Rettig C, Dworkin I, Nijhout HF, Abouheif E, Pfennig DW (2011) The role of developmental plasticity in evolutionary innovation. Proc R Soc Lond B Biol Sci 278:2705–2713

    Article  Google Scholar 

  • Montgomery RA, Vucetich JA, Peterson RO, Roloff GJ, Millenbah KF (2012) The influence of winter severity, predation and senescence on moose habitat use. J Anim Ecol 82:301–309

    Article  PubMed  Google Scholar 

  • Ong KJ, Stevens ED, Wright PA (2007) Gill morphology of the mangrove killifish (Kryptolebias marmoratus) is plastic and changes in response to terrestrial air exposure. J Exp Biol 210:1109–1115

    Article  CAS  PubMed  Google Scholar 

  • Partridge L (2010) The new biology of ageing. Phil Trans R Soc B 365:147–154

    Article  PubMed  PubMed Central  Google Scholar 

  • Pfennig DW, Rice AM, Martin RA (2006) Ecological opportunity and phenotypic plasticity interact to promote character displacement and species coexistence. Ecology 87:769–779

    Article  PubMed  Google Scholar 

  • Pfennig DW, Wund MA, Snell-Rood EC, Cruickshank T, Schlichting CD, Moczek AP (2010) Phenotypic plasticity’s impacts on diversification and speciation. Trends Ecol Evol 25:459–467

    Article  PubMed  Google Scholar 

  • Piersma T, van Gils JA (2011) The flexible phenotype: towards a body-centred integration of physiology, ecology and behaviour. Oxford University Press, Oxford, pp 82–87

    Google Scholar 

  • Poss KD, Wilson LG, Keating MT (2002) Heart regeneration in zebrafish. Science 298:2188–2190

    Article  CAS  PubMed  Google Scholar 

  • Recidoro AM, Roof AC, Schmitt M, Worton LE, Petrie T, Strand N, Ausk BJ, Srinivasan S, Moon RT, Gardiner EM, Kaminsky W, Bain SD, Allan CH, Gross TS, Kwon RY (2014) Botulinum toxin induces muscle paralysis and inhibits bone regeneration in zebrafish. J Bone Min Res 29:2346–2356

    Article  CAS  Google Scholar 

  • Regan KS, Jonz MG, Wright PA (2011) Neuroepithelial cells and the hypoxia emersion response in the amphibious fish Kryptolebias marmoratus. J Exp Biol 214:2560–2568

    Article  PubMed  Google Scholar 

  • Reznick DN, Ghalambor C, Nunney L (2002) The evolution of senescence in fish. Mech Ageing Dev 123:773–789

    Article  PubMed  Google Scholar 

  • Reznick DN, Bryant MJ, Roff D, Ghalambor CK, Ghalambor DE (2004) Effect of extrinsic mortality on the evolution of senescence in guppies. Nature 431:1095–1099

    Article  CAS  PubMed  Google Scholar 

  • Rodela TM, Wright PA (2006) Metabolic and neuroendocrine effects on diurnal urea excretion in the mangrove killifish Rivulus marmoratus. J Exp Biol 209:2704–2712

    Article  CAS  PubMed  Google Scholar 

  • Rossi GS, Turko AJ, Wright PA (2018) Oxygen drives skeletal muscle remodeling in an amphibious fish out of water. J Exp Biol 221:jeb18025

    Google Scholar 

  • Rossi GR, Tunnah L, Martin KE, Turko AJ, Taylor DS, Currie S, Wright PA (2019) Mangrove fishes rely on emersion behaviour and physiological tolerance to persist in sulfidic environments. Physiol Biochem Zool 92:316–325

    Article  PubMed  Google Scholar 

  • Sayer MDJ, Davenport J (1991) Amphibious fish: Why do they leave water? Rev Fish Biol Fish 1:159–181

    Article  Google Scholar 

  • Scarnecchia DL, Ryckman LF, Lim Y, Power GJ, Schmitz BJ, Firehammer JA (2007) Life-history and the costs of reproduction in Northern Great Plains Paddlefish (Polyodon spathula) as a potential framework for other Acipenseriform fishes. Rev Fish Sci 15:211–263

    Article  Google Scholar 

  • Sîrbulescu RF, Ilies I, Zupanc GK (2009) Structural and functional regeneration after spinal cord injury in the weakly electric teleost fish, Apteronotus leptorhynchus. J Comp Physiol A 195:699–714

    Article  Google Scholar 

  • Styga JM, Houslay TM, Wilson AJ, Earley RL (2018) Ontogeny of the morphology-performance axis in an amphibious fish (Kryptolebias marmoratus). J Exp Zool 327:620–634

    Article  Google Scholar 

  • Sullivan GM, Feinn R (2012) Using effect size—or why the p value is not enough. J Grad Med Educ 4:279–282

    Article  PubMed  PubMed Central  Google Scholar 

  • Sutton AO, Turko AJ, McLaughlin RL, Wright PA (2018) Behavioural and physiological responses of an amphibious, euryhaline mengrove fish to acute salinity exposure. Copeia 106:305–311

    Article  Google Scholar 

  • Tatarenkov A, Ring BC, Elder JF, Bechler DL, Avise JC (2010) Genetic composition of laboratory stocks of the self-fertilizing fish Kryptolebias marmoratus: a valuable resource for experimental research. PLoS One 5:e12863

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Taylor DS (1990) Adaptive specializations of the cyprinodont fish Rivulus marmoratus. Fla Sci 53:239–248

    Google Scholar 

  • Taylor DS (1992) Diet of the killifish Rivulus marmoratus collected from land crab burrows, with further ecological notes. Env Biol Fish 33:389–393

    Article  Google Scholar 

  • Taylor DS (2012) Twenty-four years in the mud: what have we learned about the natural history and ecology of the mangrove rivulus, Kryptolebias marmoratus? Integr Comp Biol 52:724–736

    Article  PubMed  PubMed Central  Google Scholar 

  • Terzibasi E, Valenzano DR, Benedetti M, Roncaglia P, Cattaneo A, Domenici L, Cellerino A (2008) Large differences in aging phenotype between strains of the short-lived annual fish Nothobranchius furzeri. PLoS One 3:e3866

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Thorpe JE (1994) Reproductive strategies in Atlantic salmon, Salmo salar L. Aquacult Fish Manage 25:77–87

    Google Scholar 

  • Tozzini ET, Baumgart M, Battistoni G, Cellerino A (2012) Adult neurogenesis in the short-lived teleost Nothobranchius furzeri: localization of neurogenic niches, molecular characterization and effects of aging. Aging Cell 11:241–251

    Article  CAS  PubMed  Google Scholar 

  • Turko AJ, Earley RL, Wright PA (2011) Behaviour drives morphology: voluntary emersion patterns shape gill structure in genetically identical mangrove rivulus. Anim Behav 82:39–47

    Article  Google Scholar 

  • Turko AJ, Cooper CA, Wright PA (2012) Gill remodelling during terrestrial acclimation reduces aquatic respiratory function of the amphibious fish Kryptolebias marmoratus. J Exp Biol 215:3973–3980

    Article  CAS  PubMed  Google Scholar 

  • Turko AJ, Robertson CE, Bianchini K, Freeman M, Wright PA (2014) The amphibious fish Kryptolebias marmoratus uses different strategies to maintain oxygen delivery during aquatic hypoxia and air exposure. J Exp Biol 217:3988–3995

    Article  PubMed  Google Scholar 

  • Turko AJ, Kültz D, Fudge D, Croll RP, Smith FM, Stoyek MR, Wright PA (2017) Skeletal stiffening in an amphibious fish out of water is a response to increased body weight. J Exp Biol 220:3621–3631

    Article  PubMed  Google Scholar 

  • Turko AJ, Tatarenkov A, Currie S, Earley RL, Platek A, Taylor DS, Wright PA (2018) Emersion behaviour underlies variation in gill morphology and aquatic respiratory function in the amphibious fish Krytolebias marmoratus. J Exp Biol 221:168039

    Article  Google Scholar 

  • Turko AJ, Maini P, Wright PA, Standen EM (2019) Gill remodeling during terrestrial acclimation in the amphibious fish Polypterus senegalus. J Morphol 280:329–338

    Article  CAS  PubMed  Google Scholar 

  • Valdesalici S, Cellerino A (2003) Extremely short lifespan in the annual fish Nothobranchius furzeri. Proc Biol Sci 270(Suppl 2):S189–S191

    PubMed  PubMed Central  Google Scholar 

  • Valenzano DR, Terzibasi E, Cattaneo A, Domenici L, Cellerino A (2006) Temperature affects longevity and age-related locomotor and cognitive decay in the short-lived fish Nothobranchius furzeri. Aging Cell 5:275–278

    Article  CAS  PubMed  Google Scholar 

  • Vijg J, Campisi J (2008) Puzzles, promises and a cure for ageing. Nature 454:1065–1071

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Weatherley A, Gill H (1987) Biology of fish growth. Academic Press, San Diego

    Google Scholar 

  • Wendler S, Hartmann N, Hoppe B, Englert C (2015) Age-dependent decline in fin regenerative capacity in the short-lived fish Nothobranchius furzeri. Aging Cell 14:857–866

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wright PA (2012) Environmental physiology of the mangrove rivulus, Kryptolebias marmoratus, a cutaneously breathing fish that survives for weeks out of water. Integr Comp Biol 52:792–800

    Article  PubMed  PubMed Central  Google Scholar 

  • Wright PA, Turko AJ (2016) Amphibious fishes: evolution and phenotypic plasticity. J Exp Biol 219:2245–2259

    Article  PubMed  Google Scholar 

  • Turko AJ, Doherty JE, Lin-Liao I, Levesque K, Kruth P, Holden JM, Early RL, Wright PA (submitted) Prolonged survival out of water is linked to a generally slow pace of life in a selfing amphibious fish

Download references

Acknowledgements

We thank Mike Davies, Matt Cornish, Nicole Carpenter, and numerous undergraduate volunteers for animal care. We also thank the reviewers for their helpful commentary.

Funding

Funding was provided by Natural Sciences and Engineering Research Council of Canada (NSERC) (Grant number 04218) graduate scholarships to G.S.R., P.V.C., and L.T., and an NSERC Discovery Grant to P.A.W.

Author information

Authors and Affiliations

Authors

Contributions

All authors contributed to the conception and design of the study. GSR, PVC, and LT conducted the experiments, analyzed the data, and wrote the draft manuscript. All authors edited the manuscript.

Corresponding author

Correspondence to Patricia A. Wright.

Ethics declarations

Conflict of interest

The authors declare no competing or financial interests.

Additional information

Communicated by B. Pelster.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 2107 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Rossi, G.S., Cochrane, P.V., Tunnah, L. et al. Ageing impacts phenotypic flexibility in an air-acclimated amphibious fish. J Comp Physiol B 189, 567–579 (2019). https://doi.org/10.1007/s00360-019-01234-8

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00360-019-01234-8

Keywords

Navigation