Skip to main content
Log in

A detailed anatomical and mathematical model of the hippocampal formation for the generation of sharp-wave ripples and theta-nested gamma oscillations

  • Published:
Journal of Computational Neuroscience Aims and scope Submit manuscript

Abstract

The mechanisms underlying the broad variety of oscillatory rhythms measured in the hippocampus during the sleep-wake cycle are not yet fully understood. In this article, we propose a computational model of the hippocampal formation based on a realistic topology and synaptic connectivity, and we analyze the effect of different changes on the network, namely the variation of synaptic conductances, the variations of the CAN channel conductance and the variation of inputs. By using a detailed simulation of intracerebral recordings, we show that this is able to reproduce both the theta-nested gamma oscillations that are seen in awake brains and the sharp-wave ripple complexes measured during slow-wave sleep. The results of our simulations support the idea that the functional connectivity of the hippocampus, modulated by the sleep-wake variations in Acetylcholine concentration, is a key factor in controlling its rhythms.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17

Similar content being viewed by others

References

  • Andersen, P., Morris, R., Amaral, D., Bliss, T., O’Keefe, J. (2007). The hippocampus book. Oxford: Oxford University Press.

    Google Scholar 

  • Axmacher, N., Henseler, M. M., Jensen, O., Weinreich, I., Elger, C. E., Fell, J. (2010). Cross-frequency coupling supports multi-item working memory in the human hippocampus. Proceedings of the National Academy of Sciences, 107(7), 3228–3233.

    Article  CAS  Google Scholar 

  • Bartos, M., Vida, I., Jonas, P. (2007). Synaptic mechanisms of synchronized gamma oscillations in inhibitory interneuron networks. Nature Reviews Neuroscience, 8(1), 45–56.

    Article  CAS  PubMed  Google Scholar 

  • Buzsáki, G. (2002). Theta oscillations in the hippocampus. Neuron, 33(3), 325–340.

    Article  PubMed  Google Scholar 

  • Buzsáki, G. (2015). Hippocampal sharp wave-ripple: a cognitive biomarker for episodic memory and planning. Hippocampus, 25(10), 1073–1188.

    Article  PubMed  PubMed Central  Google Scholar 

  • Cheng, Q., & Yakel, J. L. (2013). Presynaptic α7 nicotinic acetylcholine receptors enhance hippocampal mossy fiber glutamatergic transmission via pka activation. Journal of Neuroscience, 34(1), 124–133.

    Article  CAS  Google Scholar 

  • Cosandier-Rimele, D., Badier, J., Chauvel, P., Wendling, F. (2007). A physiologically plausible spatio-temporal model for eeg signals recorded with intracerebral electrodes in human partial epilepsy. IEEE Transactions on Biomedical Engineering, 54(3), 380– 388.

    Article  PubMed  Google Scholar 

  • Couey, J. J., Witoelar, A., Zhang, S. -J., Zheng, K., Ye, J., Dunn, B., Czajkowski, R., Moser, M. -B., Moser, E. I., Roudi, Y., et al. (2013). Recurrent inhibitory circuitry as a mechanism for grid formation. Nature neuroscience, 16(3), 318–324.

    Article  CAS  PubMed  Google Scholar 

  • Debanne, D., Guerineau, N. C., Gahwiler, B. H., Thompson, S. M. (1995). Physiology and pharmacology of unitary synaptic connections between pairs of cells in areas ca3 and ca1 of rat hippocampal slice cultures. Journal of Neurophysiology, 73(3), 1282–1294. PMID 7608771.

    Article  CAS  PubMed  Google Scholar 

  • Drever, B.D., Riedel, G., Platt, B. (2011). The cholinergic system and hippocampal plasticity. Behavioural Brain Research, 221(2), 505–514. The cholinergic system and brain function.

    Article  CAS  PubMed  Google Scholar 

  • Foster, D. J., & Wilson, M. A. (2006). Reverse replay of behavioural sequences in hippocampal place cells during the awake state. Nature, 440(7084), 680.

    Article  CAS  PubMed  Google Scholar 

  • Frazier, C. J., Rollins, Y. D., Breese, C. R., Leonard, S., Freedman, R., Dunwiddie, T. V. (1998). Acetylcholine activates an α-bungarotoxin-sensitive nicotinic current in rat hippocampal interneurons, but not pyramidal cells. Journal of Neuroscience, 18(4), 1187–1195.

    Article  CAS  PubMed  Google Scholar 

  • Freund, T., & Buzsáki, G. (1996). Interneurons of the hippocampus. Hippocampus, 6(4), 347–470.

    Article  CAS  PubMed  Google Scholar 

  • Fukai, T. (1999). Sequence generation in arbitrary temporal patterns from theta-nested gamma oscillations: a model of the basal ganglia–thalamo-cortical loops. Neural Networks, 12(7–8), 975–987.

    Article  CAS  PubMed  Google Scholar 

  • Gan, J., ming Weng, S., Pernía-Andrade, A. J., Csicsvari, J., Jonas, P. (2017). Phase-locked inhibition, but not excitation, underlies hippocampal ripple oscillations in awake mice in vivo. Neuron, 93(2), 308–314.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Giovannini, F., Knauer, B., Yoshida, M., Buhry, L. (2017). The can-in network: a biologically inspired model for self-sustained theta oscillations and memory maintenance in the hippocampus. Hippocampus, 27 (4), 450–463.

    Article  CAS  PubMed  Google Scholar 

  • Girardeau, G., & Zugaro, M. (2011). Hippocampal ripples and memory consolidation. Current Opinion in Neurobiology, 21(3), 452–459. Behavioural and cognitive neuroscience.

    Article  CAS  PubMed  Google Scholar 

  • Gray, R., Rajan, A. S., Radcliffe, K. A., Yakehiro, M., Dani, J. A. (1996). Hippocampal synaptic transmission enhanced by low concentrations of nicotine. Nature, 383(6602), 713.

    Article  CAS  PubMed  Google Scholar 

  • Hangya, B., Borhegyi, Z., Szilágyi, N., Freund, T. F., Varga, V. (2009). Gabaergic neurons of the medial septum lead the hippocampal network during theta activity. Journal of Neuroscience, 29(25), 8094–8102.

    Article  CAS  PubMed  Google Scholar 

  • Hasselmo, M. E. (1999). Neuromodulation: acetylcholine and memory consolidation. Trends in Cognitive Sciences, 3(9), 351–359.

    Article  CAS  PubMed  Google Scholar 

  • Herreras, O., Solís, J., Herranz, A., del Río, R. M., Lerma, J. (1988). Sensory modulation of hippocampal transmission. ii. evidence for a cholinergic locus of inhibition in the schaffer-ca1 synapse. Brain Research, 461(2), 303–313.

    Article  CAS  PubMed  Google Scholar 

  • Heys, J. G., Schultheiss, N. W., Shay, C. F., Tsuno, Y., Hasselmo, M. E. (2012). Effects of acetylcholine on neuronal properties in entorhinal cortex. Frontiers in behavioral neuroscience, 6, 32.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hodgkin, A. L., & Huxley, A. F. (1952). A quantitative description of membrane current and its application to conduction and excitation in nerve. The Journal of Physiology, 117(4), 500–544.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hofmanis, J., Caspary, O., Louis-Dorr, V., Maillard, L. (2011). Automatic depth electrode localization in intracranial space. In: 4th International Conference on Bio-inspired Systems and Signal Processing, Biosignals 2011 page CDROM, Rome. Italy.

  • Jinno, S., & Kosaka, T. (2010). Stereological estimation of numerical densities of glutamatergic principal neurons in the mouse hippocampus. Hippocampus, 20(7), 829–840.

    PubMed  Google Scholar 

  • Jones, S., & Yakel, J. L. (1997). Functional nicotinic ach receptors on interneurones in the rat hippocampus. The Journal of Physiology, 504(3), 603–610.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kang, D., Ding, M., Topchiy, I., Shifflett, L., Kocsis, B. (2015). Theta-rhythmic drive between medial septum and hippocampus in slow-wave sleep and microarousal: a granger causality analysis. Journal of Neurophysiology, 114(5), 2797–2803. PMID: 26354315.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Knowles, W., & Schwartzkroin, P. (1981). Local circuit synaptic interactions in hippocampal brain slices. Journal of Neuroscience, 1(3), 318–322.

    Article  CAS  PubMed  Google Scholar 

  • Larimer, P., & Strowbridge, B. W. (2008). Nonrandom local circuits in the dentate gyrus. Journal of Neuroscience, 28(47), 12212–12223.

    Article  CAS  PubMed  Google Scholar 

  • Mazzoni, A., Lindén, H., Cuntz, H., Lansner, A., Panzeri, S., Einevoll, G. T. (2015). Computing the local field potential (lfp) from integrate-and-fire network models. PLOS Computational Biology, 11(12), 1–38.

    Article  CAS  Google Scholar 

  • Nádasdy, Z., Hirase, H., Czurkó, A., Csicsvari, J., Buzsáki, G. (1999). Replay and time compression of recurring spike sequences in the hippocampus. Journal of Neuroscience, 19(21), 9497–9507.

    Article  PubMed  Google Scholar 

  • O’Keefe, J., & Recce, M. L. (1993). Phase relationship between hippocampal place units and the eeg theta rhythm. Hippocampus, 3(3), 317–330.

    Article  PubMed  Google Scholar 

  • Pastoll, H., Solanka, L., VanRossum, M., Nolan, M. (2013). Feedback inhibition enables theta-nested gamma oscillations and grid firing fields. Neuron, 77(1), 141–154.

    Article  CAS  PubMed  Google Scholar 

  • Patel, J., Schomburg, E. W., Berényi, A., Fujisawa, S., Buzsáki, G. (2013). Local generation and propagation of ripples along the septotemporal axis of the hippocampus. Journal of Neuroscience, 33(43), 17029–17041.

    Article  CAS  PubMed  Google Scholar 

  • Patton, P. E., & McNaughton, B. (1995). Connection matrix of the hippocampal formation: i. the dentate gyrus. Hippocampus, 5(4), 245–286.

    Article  CAS  PubMed  Google Scholar 

  • Pettersen, K. H., Lindén, H., Dale, A. M., Einevoll, G. T. (2012). Extracellular spikes and csd. Handbook of neural activity measurement, 1, 92–135.

    Article  Google Scholar 

  • Platt, B., & Riedel, G. (2011). The cholinergic system, {EEG} and sleep. Behavioural Brain Research, 221 (2), 499–504. The cholinergic system and brain function.

    Article  CAS  PubMed  Google Scholar 

  • Ropireddy, D., Scorcioni, R., Lasher, B., Buzsáki, G., Ascoli, G. A. (2011). Axonal morphometry of hippocampal pyramidal neurons semi-automatically reconstructed after in vivo labeling in different ca3 locations. Brain Structure and Function, 216(1), 1–15.

    Article  PubMed  Google Scholar 

  • Ruivo, L. M. T. -G., Baker, K. L., Conway, M. W., Kinsley, P. J., Gilmour, G., Phillips, K. G., Isaac, J. T., Lowry, J. P., Mellor, J. R. (2017). Coordinated acetylcholine release in prefrontal cortex and hippocampus is associated with arousal and reward on distinct timescales. Cell Reports, 18(4), 905–917.

    Article  CAS  Google Scholar 

  • Sarter, M., Parikh, V., Howe, W. M. (2009). Phasic acetylcholine release and the volume transmission hypothesis: time to move on. Nature Reviews Neuroscience, 10, 383–390.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Somogyi, P., Katona, L., Klausberger, T., Lasztóczi, B., Viney, T. J. (2014). Temporal redistribution of inhibition over neuronal subcellular domains underlies state-dependent rhythmic change of excitability in the hippocampus. Philosophical Transactions of the Royal Society of London B: Biological Sciences, 369(1635), 20120518.

    Article  PubMed  Google Scholar 

  • Stimberg, M., Goodman, D. F., Benichoux, V., Brette, R. (2014). Equation-oriented specification of neural models for simulations. Frontiers in Neuroinformatics, 8, 6.

    Article  PubMed  PubMed Central  Google Scholar 

  • Taxidis, J., Coombes, S., Mason, R., Owen, M. R. (2012). Modeling sharp wave-ripple complexes through a ca3-ca1 network model with chemical synapses. Hippocampus, 22(5), 995–1017.

    Article  CAS  PubMed  Google Scholar 

  • Tiesinga, P. H., Fellous, J. -M., José, J. V., Sejnowski, T. J. (2001). Computational model of carbachol-induced delta, theta, and gamma oscillations in the hippocampus. Hippocampus, 11(3), 251–274.

    Article  CAS  PubMed  Google Scholar 

  • Tononi, G., & Cirelli, C. (2006). Sleep function and synaptic homeostasis. Sleep Medicine Reviews, 10(1), 49–62.

    Article  PubMed  Google Scholar 

  • Traub, R. D., & Bibbig, A. (2000). A model of high-frequency ripples in the hippocampus based on synaptic coupling plus axon–axon gap junctions between pyramidal neurons. Journal of Neuroscience, 20(6), 2086–2093.

    Article  CAS  PubMed  Google Scholar 

  • Wang, X. -J., & Buzsáki, G. (1996). Gamma oscillation by synaptic inhibition in a hippocampal interneuronal network model. Journal of Neuroscience, 16(20), 6402–6413.

    Article  CAS  PubMed  Google Scholar 

  • West, M. J., & Gundersen, H. J. G. (1990). Unbiased stereological estimation of the number of neurons in the human hippocampus. The Journal of Comparative Neurology, 296(1), 1–22.

    Article  CAS  PubMed  Google Scholar 

  • Yoshida, M., Knauer, B., Jochems, A. (2012). Cholinergic modulation of the can current may adjust neural dynamics for active memory maintenance, spatial navigation and time-compressed replay. Frontiers in neural circuits, 6, 10.

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Amélie Aussel.

Ethics declarations

Conflict of interests

The authors declare that they have no conflict of interest.

Additional information

Information Sharing Statement

All the Python source files used for building the network and running the simulations are accessible on the ModelDB public repositories.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Aussel, A., Buhry, L., Tyvaert, L. et al. A detailed anatomical and mathematical model of the hippocampal formation for the generation of sharp-wave ripples and theta-nested gamma oscillations. J Comput Neurosci 45, 207–221 (2018). https://doi.org/10.1007/s10827-018-0704-x

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10827-018-0704-x

Keywords

Navigation