Skip to main content
Log in

The effect of inhibition on the existence of traveling wave solutions for a neural field model of human seizure termination

  • Published:
Journal of Computational Neuroscience Aims and scope Submit manuscript

Abstract

In this paper we study the influence of inhibition on an activity-based neural field model consisting of an excitatory population with a linear adaptation term that directly regulates the activity of the excitatory population. Such a model has been used to replicate traveling wave data as observed in high density local field potential recordings (González-Ramírez et al. PLoS Computational Biology, 11(2), e1004065, 2015). In this work, we show that by adding an inhibitory population to this model we can still replicate wave properties as observed in human clinical data preceding seizure termination, but the parameter range over which such waves exist becomes more restricted. This restriction depends on the strength of the inhibition and the timescale at which the inhibition acts. In particular, if inhibition acts on a slower timescale relative to excitation then it is possible to still replicate traveling wave patterns as observed in the clinical data even with a relatively strong effect of inhibition. However, if inhibition acts on the same timescale as the excitation, or faster, then traveling wave patterns with the desired characteristics cease to exist when the inhibition becomes sufficiently strong.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  • Amari, S. (1977). Dynamics of pattern formation in lateral inhibition type neural fields. Biological Cybernetics, 27, 77–87.

    Article  PubMed  CAS  Google Scholar 

  • Bojak, I., & Liley, D.T.J. (2005). Modeling the effects of anesthesia on the electroencephalogram. Physical Review E, 71, 041902.

    Article  CAS  Google Scholar 

  • Bojak, I., Liley, D.T.J., Cadusch, P.J., Cheng, K. (2004). Electrorhythmogenesis and anaesthesia in a physiological mean field theory. Neurocomputing, 58–60, 1197–202.

    Article  Google Scholar 

  • Braitenberg, V., & Schuz, A. (1998). Cortex: statistics and geometry of neuronal connectivity. Berlin: Springer.

    Book  Google Scholar 

  • Bressloff, P.C. (2001). Traveling fronts and wave propagation failure in an inhomogeneous neural network. Physica D, 155, 83–100.

    Article  Google Scholar 

  • Bressloff, P.C. (2012). Spatiotemporal dynamics of continuum neural fields. Journal of Physics A: Mathematical and Theoretical, 45, 033001.

    Article  Google Scholar 

  • Bressloff, P.C. (2014). Waves in neural media, Lecture notes on mathematical modelling in the life sciences. Berlin: Springer.

    Google Scholar 

  • Bressloff, P.C., Cowan, J.D., Golubitsky, M, Thomas, P.J., Wiener, M. (2001). Geometric visual hallucinations, Euclidean symmetry and the functional architecture of striate cortex. Philosophical Transactions of the Royal Society B, 356, 299–330.

    Article  CAS  Google Scholar 

  • Bressloff, P.C., & Webber, M.A. (2011). Neural field model of binocular rivalry waves. Journal of Computational Neuroscience. https://doi.org/10.1007/s10827-011-0351-y.

  • Chervin, R.D., Pierce, P.A., Connors, B.W. (1988). Periodicity and directionality in the propagation of epileptiform discharges across neocortex. Journal of Neurophysiology, 60, 1695–1713. PMID: 3143812.

    Article  PubMed  CAS  Google Scholar 

  • Compte, A., Sanchez-Vives, M.V., McCormick, D.A., Wang, X.J. (2003). Cellular and network mechanisms of slow oscillatory activity (< 1 Hz) and wave propagations in a cortical network model. Journal of Neurophysiology, 89(5), 2707–2725.

    Article  PubMed  Google Scholar 

  • Coombes, S. (2005). Waves, bumps, and patterns in neural field theories. Biological Cybernetics, 93, 91–108.

    Article  PubMed  CAS  Google Scholar 

  • Coombes, S., beim Graben, P., Potthast, R., Wright, J. (2014). Neural fields: theory and applications. Berlin: Springer.

    Book  Google Scholar 

  • Destexhe, A., Bal, T., McCormick, D.A., Sejnowski, T.J. (1996). Ionic mechanisms underlying synchronized oscillations and propagating waves in a model of ferret thalamic slices. Journal of Neurophysiology, 76(3), 2049–2070.

    Article  PubMed  CAS  Google Scholar 

  • Ermentrout, G.B. (1998). Neural Networks as spatio-temporal pattern-forming systems. Reports on Progress in Physics, 61, 353–430.

    Article  Google Scholar 

  • Ermentrout, G.B., & Cowan, J. (1979). A mathematical theory of visual hallucination patterns. Biological Cybernetics, 34, 137– 50.

    Article  PubMed  CAS  Google Scholar 

  • Ermentrout, G.B., & Terman, D.H. (2010). Mathematical foundations of neuroscience. Berlin: Springer.

    Book  Google Scholar 

  • Foster, B.L., Bojak, I., Liley, D.T.J. (2011). Understanding the effects of anesthetic agents on the eeg through neural field theory. In Conference of the IEEE engineering in medicine and biology society 4709-12, 652, DOI https://doi.org/10.1109/IEMBS.2011.6091166.

  • Fuster, J.M., & Alexander, G. (1971). Neuron activity related to short-term memory. Science, 173, 652.

    Article  PubMed  CAS  Google Scholar 

  • Golomb, D., & Amitai, Y. (1997). Propagating neuronal discharges in neocortical slices: computational and experimental study. Journal of Neurophysiology, 78, 1199–1211.

    Article  PubMed  CAS  Google Scholar 

  • González-Ramírez, L.R, Ahmed, O., Cash, S.S., Wayne, C.E., Kramer, M.A. (2015). A biologically constrained, mathematical model of cortical wave propagation preceding seizure termination. PLoS Computational Biology, 11(2), e1004065.

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Huang, X., Troy, W.C., Yang, Q., Ma, H., Laing, C., Schiff, S., Wu, J.Y. (2004). Spiral waves in disinhibited mammalian cortex. The Journal of Neuroscience, 24, 9897–9902.

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Jirsa, V.K., & Haken, H. (1996). Field theory of electromagnetic brain activity. Physical Review Letters, 77, 960–3.

    Article  PubMed  CAS  Google Scholar 

  • Kilpatrick, Z.P., Folias, S.E., Bressloff, P.C. (2008). Traveling pulses and wave propagation failure in inhomogeneous neural media. SIAM Journal on Applied Dynamical Systems, 7, 161–185.

    Article  Google Scholar 

  • Kramer, M.A., Kirsch, H.E., Szeri, A.J. (2005). Pathological pattern formation and cortical propagation of epileptic seizures. Journal of the Royal Society, Interface, 2, 113–127.

    Article  PubMed  PubMed Central  Google Scholar 

  • Lee, U., Kim, S., Jung, K. (2006). Classification of epilepsy types through global network analysis of scalp electroencephalograms. Physical Review E, 73, 041920.

    Article  CAS  Google Scholar 

  • Liley, D.T.J., & Bojak, I. (2005). Understanding the transition to seizure by modeling the epileptiform activity of general anesthetic agents. Journal of Clinical Neurophysiology, 22, 5.

    Google Scholar 

  • Liley, D.T.J., Cadusch, P.J., Dafilis, M.P. (2002). A spatially continuous mean field theory of electrocortical activity. Network, 13, 67–113.

    Article  PubMed  Google Scholar 

  • Markram, H., Toledo-Rodríguez, M., Wang, Y., Gupta, A., Silberberg, G., Wu, C. (2004). Interneurons of the neocortical inhibitory system. Nature Reviews Neuroscience, 5(10), 793–807.

    Article  PubMed  CAS  Google Scholar 

  • Milton, J., & Jung, P. (2003). Epilepsy as a dynamic disease. Berlin: Springer.

    Book  Google Scholar 

  • Muller, L., & Destexhe, A. (2012). Propagating waves in thalamus, cortex and the thalamocortical system: experiments and models. Journal of Physiology, 106(5–6), 222—238. https://doi.org/10.1016/j.jphysparis.2012.06.005.

    Article  Google Scholar 

  • Nunez, P.I. (1995). Neocortical dynamics and human EEG rhythms, (p. 708). New York: Oxford University Press.

    Google Scholar 

  • Pinto, D.J., & Ermentrout, G.B. (2001). Spatially structured activity in synaptically coupled neuronal networks: II. Lateral inhibition and standing pulses. SIAM Journal on Applied Mathematics, 62(1), 226–243.

    Article  Google Scholar 

  • Pinto, D.J., Brumberg, J.C., Simons, D.J., Ermentrout, G.B. (1996). A quantitative population model of whisker barrels: re-examining the Wilson-Cowan equations. Journal of Computational Neuroscience, 3, 247–264.

    Article  PubMed  CAS  Google Scholar 

  • Pinto, D.J., Patrick, S.L., Huang, W.C., Connors, B.W. (2005). Initiation, propagation, and termination of epileptiform activity in rodent neocortex in vitro involve distinct mechanisms. The Journal of Neuroscience, 25 (36), 8131/81-40, 247–264.

    Article  CAS  Google Scholar 

  • Robinson, P.A., Loxley, P.N., O’Connor, S.C., Rennie, C.J. (2001). Modal analysis of corticothalamic dynamics, electroencephalographic spectra and evoked potentials. Physical Review E, 63, 041909–13.

    Article  CAS  Google Scholar 

  • Shusterman, V., & Troy, W.C. (2008). From baseline to epileptiform activity: a path to synchronized rhythmicity in large-scale neural networks. Physical Review E, 77, 061911.

    Article  CAS  Google Scholar 

  • Smith, E.H., Liou, J., Davis, T.S., Merricks, E. M., Kellis, S.S., Weiss, S.A., et al. (2016). The ictal wavefront is the spatiotemporal source of discharges during spontaneous human seizures.Nature Communications, 7, 1–12.

  • Spencer, J.P., & Schoner, G. (2006). An embodied approach to cognitive systems: a dynamic neural field theory of spatial working memory. In Proceedings of the 28th annual conference of the cognitive science society (pp. 2180–2185).

  • Steyn-Ross, M.L., Steyn-Ross, D.A., Sleigh, J.W., Liley, D.T.J. (1999). Theoretical EEG stationary spectrum for a white-noise-driven cortex: evidence for a general anesthetic-induced phase transition. Physical Review E, 60, 7299–311.

    Article  CAS  Google Scholar 

  • Toubol, J., Wendling, F., Chauvel, P., Faugeras, O. (2013). Neural mass activity, bifurcations and epilepsy. Neural Computation, 23(12), 3232–3286.

    Article  Google Scholar 

  • Traub, R., Contreras, D., Cunningham, M., Murray, H., LeBeau, F., Roopun, A., et al. (2005). Single-column thalamocortical network model exhibiting gamma oscillations, sleep spindles, and epileptogenic bursts. Journal of Neurophysiology, 93, 2194–2232.

    Article  PubMed  Google Scholar 

  • Wadman, W.J., & Gutnick, M.J. (1993). Non-uniform propagation of epileptiform discharge in brain slices of rat neocortex. Neuroscience, 52, 255–262. https://doi.org/10.1016/0306-4522(93)90154-8PMID:8450945.

    Article  PubMed  CAS  Google Scholar 

  • Wagner, F.B., Eskandar, E.N., Crosgrove, G.R., Madsen, J.R., et al. (2015). Microscale spatiotemporal dynamics during neocortical propagation of human focal seizures. Neuroimage, 122, 114–30.

    Article  PubMed  PubMed Central  Google Scholar 

  • Wilson, H.R., & Cowan, J.D. (1973). A mathematical theory of the functional dynamics of cortical and thalamic nervous tissue. Cybernetik, 13, 55–80.

    CAS  Google Scholar 

  • Wu, J.Y., Guan, L., Bai, L., Yang, Q. (2001). Spatiotemporal properties of an evoked population activity in rat sensory cortical slices. Journal of Neurophysiology, 86, 2461–74. PMID: 11698535.

    Article  PubMed  CAS  Google Scholar 

  • Xiao, Y., Huang, X.Y., Van Wert, S., Barreto, E., Wu, J.Y, Gluckman, B.J., Schiff, S.J. (2012). The role of inhibition in oscillatory wave dynamics in the cortex. European Journal of Neuroscience, 36, 2201–2212.

    Article  PubMed  Google Scholar 

Download references

Acknowledgements

MAK acknowledges support from NSF DMS 1451384 and NIH NINDS R01NS072023.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to L. R. González-Ramírez.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Action Editor: Bard Ermentrout

Electronic supplementary material

Below is the link to the electronic supplementary material.

(PDF 382 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

González-Ramírez, L.R., Kramer, M.A. The effect of inhibition on the existence of traveling wave solutions for a neural field model of human seizure termination. J Comput Neurosci 44, 393–409 (2018). https://doi.org/10.1007/s10827-018-0685-9

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10827-018-0685-9

Keywords

Navigation