Skip to main content
Log in

Integration of Biochemical, Cellular, and Genetic Indicators for Understanding the Aging Process in a Bivalve Mollusk Chlamys farreri

  • Original Article
  • Published:
Marine Biotechnology Aims and scope Submit manuscript

Abstract

The major causal factors for the irreversible decline in physical vitality during organismal aging are postulated to be a chronic state of cellular redox imbalance, metabolic toxicity, and impaired energy homeostasis. We assessed whether the relevant enzyme activity, oxidative stress, and intracellular ATP might be causally involved in the aging of short-lived Chlamys farreri (life span 4~5 years). A total of eight related biochemical and cellular indicators were chosen for the subsequent analysis. All the indicators were measured in seven different tissues from scallops aged one to four years, and our data support that the aging of C. farreri is associated with attenuated tissue enzyme activity as well as a decreased metabolic rate. Through principal component analysis, we developed an integrated vigor index for each tissue for comprehensive age-related fitness evaluation. Remarkably, all tissue-integrated vigor indexes significantly declined with age, and the kidney was observed to be the most representative tissue. Further transcriptional profiling of the enzymatic genes provided additional detail on the molecular responses that may underlie the corresponding biochemical results. Moreover, these critical molecular responses may be attributed to the conserved hierarchical regulators, e.g., FOXO, AMPKs, mTOR, and IGF1R, which were identified as potentially novel markers for chronic fitness decline with age in bivalves. The present study provides a systematic approach that could potentially benefit the global assessment of the aging process in C. farreri and provide detailed evaluation of the biochemical, cellular, and genetic indicators that might be involved. This information may assist in a better understanding of bivalve adaptability and life span.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Data Availability

The gene sequences used in the present research can be obtained from cfBase (http://mgb.ouc.edu.cn/cfbase/cgi-bin/blast) and NCBI (https://www.ncbi.nlm.nih.gov/).

References

  • Abele D, Philipp E (2013) Environmental control and control of the environment: the basis of longevity in bivalves. Gerontology 59:261–266

    Article  PubMed  Google Scholar 

  • Abele D, Strahl J, Brey T, Philipp EER (2008) Imperceptible senescence: ageing in the ocean quahog Arctica islandica. Free Radic Res 42:474–480

    Article  CAS  PubMed  Google Scholar 

  • Abele D, Brey T, Philipp E (2009) Bivalve models of aging and the determination of molluscan lifespans. Exp Gerontol 44:307–315

    Article  PubMed  Google Scholar 

  • Altman BJ, Stine ZE, Dang CV (2016) From Krebs to clinic: glutamine metabolism to cancer therapy. Nat Rev Cancer 16:619–634

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Appeltans W, Ahyong ST, Anderson G, Angel MV, Artois T, Bailly N, Bamber R, Barber A, Bartsch I, Berta A, Błażewicz-Paszkowycz M, Bock P, Boxshall G, Boyko CB, Brandão SN, Bray RA, Bruce NL, Cairns SD, Chan TY, Cheng L, Collins AG, Cribb T, Curini-Galletti M, Dahdouh-Guebas F, Davie PJF, Dawson MN, de Clerck O, Decock W, de Grave S, de Voogd NJ, Domning DP, Emig CC, Erséus C, Eschmeyer W, Fauchald K, Fautin DG, Feist SW, Fransen CHJM, Furuya H, Garcia-Alvarez O, Gerken S, Gibson D, Gittenberger A, Gofas S, Gómez-Daglio L, Gordon DP, Guiry MD, Hernandez F, Hoeksema BW, Hopcroft RR, Jaume D, Kirk P, Koedam N, Koenemann S, Kolb JB, Kristensen RM, Kroh A, Lambert G, Lazarus DB, Lemaitre R, Longshaw M, Lowry J, Macpherson E, Madin LP, Mah C, Mapstone G, McLaughlin PA, Mees J, Meland K, Messing CG, Mills CE, Molodtsova TN, Mooi R, Neuhaus B, Ng PKL, Nielsen C, Norenburg J, Opresko DM, Osawa M, Paulay G, Perrin W, Pilger JF, Poore GCB, Pugh P, Read GB, Reimer JD, Rius M, Rocha RM, Saiz-Salinas JI, Scarabino V, Schierwater B, Schmidt-Rhaesa A, Schnabel KE, Schotte M, Schuchert P, Schwabe E, Segers H, Self-Sullivan C, Shenkar N, Siegel V, Sterrer W, Stöhr S, Swalla B, Tasker ML, Thuesen EV, Timm T, Todaro MA, Turon X, Tyler S, Uetz P, van der Land J, Vanhoorne B, van Ofwegen LP, van Soest RWM, Vanaverbeke J, Walker-Smith G, Walter TC, Warren A, Williams GC, Wilson SP, Costello MJ (2012) The magnitude of global marine species diversity. Curr Biol 22:2189–2202

    Article  CAS  PubMed  Google Scholar 

  • Arivazhagan P, Thilakavathy T, Panneerselvam C (2000) Antioxidant lipoate and tissue antioxidants in aged rats. J Nutr Biochem 11:122–127

    Article  CAS  PubMed  Google Scholar 

  • Austad SN (2009) Is there a role for new invertebrate models for aging research? J Gerontol A Biol Sci Med Sci 64:192–194

    Article  PubMed  Google Scholar 

  • Barja G (2013) Updating the mitochondrial free radical theory of aging: an integrated view, key aspects, and confounding concepts. Antioxid Redox Signal 19:1420–1445

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Basova L, Strahl J, Philipp EER, Brey T, Sukhotin A, Abele D (2017) Lipofuscin accumulation in tissues of Arctica islandica indicates faster ageing in populations from brackish environments. Mar Biol 164:72

  • Bradford MM (1976) A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal Biochem 72:248–254

    Article  CAS  PubMed  Google Scholar 

  • Budanov AV (2011) Stress-responsive sestrins link p53 with redox regulation and mammalian target of rapamycin signaling. Antioxid Redox Signal 15:1679–1690

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Burgering B (2008) A brief introduction to FOXOlogy. Oncogene 27:2258–2262

    Article  CAS  PubMed  Google Scholar 

  • Buttemer WA, Abele D, Costantini D (2010) From bivalves to birds: oxidative stress and longevity. Funct Ecol 24:971–983

    Article  Google Scholar 

  • Carroll NV, Longley RW, Roe JH (1956) The determination of glycogen in liver and muscle by use of anthrone reagent. J Biol Chem 220:583–593

    CAS  PubMed  Google Scholar 

  • Chi C, Giri SS, Jun JW, Kim HJ, Yun S, Kim SG et al (2016) Marine toxin okadaic acid affects the immune function of bay scallop (Argopecten irradians). Molecules 21:1108

  • Chomczynski P, Sacchi N (2006) The single-step method of RNA isolation by acid guanidinium thiocyanate-phenol-chloroform extraction: twenty-something years on. Nat Protoc 1:581–585

    Article  CAS  PubMed  Google Scholar 

  • Clark JF (1997) Creatine and phosphocreatine: a review of their use in exercise and sport. J Athl Train 32:45–51

    CAS  PubMed  PubMed Central  Google Scholar 

  • Clark MS, Thorne MAS, Amaral A, Vieira F, Batista FM, Reis J et al (2013) Identification of molecular and physiological responses to chronic environmental challenge in an invasive species: the Pacific oyster, Crassostrea gigas. Ecol Evol 3:3283–3297

    PubMed  PubMed Central  Google Scholar 

  • de Magalhaes JP, Costa J, Church GM (2007) An analysis of the relationship between metabolism, developmental schedules, and longevity using phylogenetic independent contrasts. J Gerontol A Biol Sci Med Sci 62:149–160

    Article  PubMed  Google Scholar 

  • DeBerardinis RJ, Cheng T (2010) Q’s next: the diverse functions of glutamine in metabolism, cell biology and cancer. Oncogene 29:313–324

    Article  CAS  PubMed  Google Scholar 

  • Gagliano N, Grizzi F, Annoni G (2007) Mechanisms of aging and liver functions. Dig Dis 25:118–123

    Article  PubMed  Google Scholar 

  • Goth L (1991) A simple method for determination of serum catalase activity and revision of reference range. Clin Chim Acta 196:143–151

    Article  CAS  PubMed  Google Scholar 

  • Greer EL, Brunet A (2008) FOXO transcription factors in ageing and cancer. Acta Physiol 192:19–28

    Article  CAS  Google Scholar 

  • Guderley H, Portner HO (2010) Metabolic power budgeting and adaptive strategies in zoology: examples from scallops and fish. Can J Zool 88:753–763

    Article  Google Scholar 

  • Guerra C, Zenteno-Savin T, Maeda-Martinez AN, Philipp EER, Abele D (2012) Changes in oxidative stress parameters in relation to age, growth and reproduction in the short-lived catarina scallop Argopecten ventricosus reared in its natural environment. Comp Biochem Physiol A Mol Integr Physiol 162:421–430

    Article  CAS  PubMed  Google Scholar 

  • Guo XM, Ford SE, Zhang FS (1999) Molluscan aquaculture in China. J Shellfish Res 18:19–31

    Google Scholar 

  • Haag WR, Rypel AL (2011) Growth and longevity in freshwater mussels: evolutionary and conservation implications. Biol Rev 86:225–247

    Article  PubMed  Google Scholar 

  • Hagopian K, Ramsey JJ, Weindruch R (2003) Caloric restriction increases gluconeogenic and transaminase enzyme activities in mouse liver. Exp Gerontol 38:267–278

    Article  CAS  PubMed  Google Scholar 

  • Haigis MC, Yankner BA (2010) The aging stress response. Mol Cell 40:333–344

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Harman D (1956) Aging: a theory based on free radical and radiation chemistry. J Gerontol 11:298–300

    Article  CAS  PubMed  Google Scholar 

  • Hellemans J, Mortier G, De Paepe A, Speleman F, Vandesompele J (2007) qBase relative quantification framework and software for management and automated analysis of real-time quantitative PCR data. Genome Biol 8:R19

  • Hu XL, Bao ZM, Hu JJ, Shao MY, Zhang LL, Bi K et al (2006) Cloning and characterization of tryptophan 2,3-dioxygenase gene of Zhikong scallop Chlamys farreri (Jones and Preston 1904). Aquac Res 37:1187–1194

    Article  CAS  Google Scholar 

  • Hung CM, Garcia-Haro L, Sparks CA, Guertin DA (2012) mTOR-dependent cell survival mechanisms. Cold Spring Harb Perspect Biol 4:a008771

  • Janero DR (1990) Malondialdehyde and thiobarbituric acid-reactivity as diagnostic indexes of lipid-peroxidation and peroxidative tissue-injury. Free Radic Biol Med 9:515–540

    Article  CAS  PubMed  Google Scholar 

  • Johnson ACM, Zager RA (2014) Renal cortical pyruvate as a potentially critical mediator of acute kidney injury. Nephron Clin Pract 127:129–132

    Article  CAS  PubMed  Google Scholar 

  • Jolliffe IT (2002) Principal component analysis. Springer Series in Statistics, 2nd ed. Springer-Verlag New York, New York, pp 487

  • Kenyon CJ (2010) The genetics of ageing. Nature 464:504–512

  • Kirkwood TB (1977) Evolution of ageing. Nature 270:301–304

  • Klotz LO, Sanchez-Ramos C, Prieto-Arroyo I, Urbanek P, Steinbrenner H, Monsalve M (2015) Redox regulation of FoxO transcription factors. Redox Biol 6:51–72

  • Kono Y (1978) Generation of superoxide radical during autoxidation of hydroxylamine and an assay for superoxide dismutase. Arch Biochem Biophys 186:189–195

    Article  CAS  PubMed  Google Scholar 

  • Kumar V, Gill KD (2018) Basic concepts in clinical biochemistry: a practical guide. Springer, Singapore

    Book  Google Scholar 

  • Levine AJ, Feng Z, Mak TW, You H, Jin S (2006) Coordination and communication between the p53 and IGF-1-AKT-TOR signal transduction pathways. Genes Dev 20:267–275

    Article  CAS  PubMed  Google Scholar 

  • Li YL, Sun XQ, Hu XL, Xun XG, Zhang JB, Guo XM et al (2017) Scallop genome reveals molecular adaptations to semi-sessile life and neurotoxins. Nat Commun 8:1721

  • Liao H, Yang ZJ, Dou Z, Sun FH, Kou SH, Zhang ZR et al (2019) Impact of ocean acidification on the energy metabolism and antioxidant responses of the yesso scallop (Patinopecten yessoensis). Front Physiol 9:1967

  • Lopez-Otin C, Blasco MA, Partridge L, Serrano M, Kroemer G (2013) The hallmarks of aging. Cell 153:1194–1217

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • McCormick MA, Tsai SY, Kennedy BK (2011) TOR and ageing: a complex pathway for a complex process. Philos Trans R Soc B 366:17–27

  • Philipp EER, Abele D (2010) Masters of longevity: lessons from long-lived bivalves - a mini-review. Gerontology 56:55–65

    Article  CAS  PubMed  Google Scholar 

  • Philipp E, Brey T, Portner HO, Abele D (2005) Chronological and physiological ageing in a polar and a temperate mud clam. Mech Ageing Dev 126:598–609

    Article  CAS  PubMed  Google Scholar 

  • Philipp E, Brey T, Heilmayer O, Abele D, Portner HO (2006) Physiological ageing in a temperate and a polar swimming scallop. Mar Ecol Prog Ser 307:187–198

    Article  Google Scholar 

  • Philipp EER, Schmidt M, Gsottbauer C, Sanger AM, Abele D (2008) Size-and age-dependent changes in adductor muscle swimming physiology of the scallop Aequipecten opercularis. J Exp Biol 211:2492–2501

    Article  PubMed  Google Scholar 

  • Reitman S, Frankel S (1957) A colorimetric method for the determination of serum glutamic oxalacetic and glutamic pyruvic transaminases. Am J Clin Pathol 28:56–63

    Article  CAS  PubMed  Google Scholar 

  • Ridgway ID, Richardson CA, Austad SN (2011) Maximum shell size, growth rate, and maturation age correlate with longevity in bivalve molluscs. J Gerontol A Biol Sci Med Sci 66:183–190

    Article  CAS  PubMed  Google Scholar 

  • Schindhelm RK, Diamant M, Dekker JM, Tushuizen ME, Teerlink T, Heine RJ (2006) Alanine aminotransferase as a marker of non-alcoholic fatty liver disease in relation to type 2 diabetes mellitus and cardiovascular disease. Diabetes Metab Res Rev 22:437–443

    Article  CAS  PubMed  Google Scholar 

  • Selzner M, Selzner N, Jochum W, Graf R, Clavien PA (2007) Increased ischemic injury in old mouse liver: an ATP-dependent mechanism. Liver Transpl 13:382–390

    Article  PubMed  Google Scholar 

  • Sohal RS, Agarwal S, Dubey A, Orr WC (1993) Protein oxidative damage is associated with life expectancy of houseflies. Proc Natl Acad Sci U S A 90:7255–7259

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Strahl J, Abele D (2010) Cell turnover in tissues of the long-lived ocean quahog Arctica islandica and the short-lived scallop Aequipecten opercularis. Mar Biol 157:1283–1292

    Article  Google Scholar 

  • Strahl J, Philipp E, Brey T, Broeg K, Abele D (2007) Physiological aging in the Icelandic population of the ocean quahog Arctica islandica. Aquat Biol 1:77–83

    Article  Google Scholar 

  • Strahl J, Dringen R, Schmidt MM, Hardenberg S, Abele D (2011) Metabolic and physiological responses in tissues of the long-lived bivalve Arctica islandica to oxygen deficiency. Comp Biochem Physiol A Mol Integr Physiol 158:513–519

    Article  PubMed  CAS  Google Scholar 

  • Sullivan LB, Gui DY, Hosios AM, Bush LN, Freinkman E, Vander Heiden MG (2015) Supporting aspartate biosynthesis is an essential function of respiration in proliferating cells. Cell 162:552–563

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Tian LQ, Cai QY, Wei HC (1998) Alterations of antioxidant enzymes and oxidative damage to macromolecules in different organs of rats during aging. Free Radic Biol Med 24:1477–1484

    Article  CAS  PubMed  Google Scholar 

  • Ungvari Z, Ridgway I, Philipp EER, Campbell CM, McQuary P, Chow T et al (2011) Extreme longevity is associated with increased resistance to oxidative stress in Arctica islandica, the longest-living non-colonial animal. J Gerontol A Biol Sci Med Sci 66:741–750

    Article  PubMed  CAS  Google Scholar 

  • Ungvari Z, Sosnowska D, Mason JB, Gruber H, Lee SW, Schwartz TS, Brown MK, Storm NJ, Fortney K, Sowa J, Byrne AB, Kurz T, Levy E, Sonntag WE, Austad SN, Csiszar A, Ridgway I (2013) Resistance to genotoxic stresses in Arctica islandica, the longest living noncolonial animal: is extreme longevity associated with a multistress resistance phenotype? J Gerontol A Biol Sci Med Sci 68:521–529

    Article  CAS  PubMed  Google Scholar 

  • Vandesompele J, De Preter K, Pattyn F, Poppe B, Van Roy N, De Paepe A et al (2002) Accurate normalization of real-time quantitative RT-PCR data by geometric averaging of multiple internal control genes. Genome Biol 3:research0034.1

  • Vina J, Borras C, Miquel J (2007) Theories of ageing. Lubmb Life 59:249–254

  • Wang H, Joseph JA (1999) Quantifying cellular oxidative stress by dichlorofluorescein assay using microplate reader. Free Radic Biol Med 27:612–616

  • Weeks LE, Johnson JH (1977) Lactate dehydrogenase determination method. U.S. Patent p. No 4,006,061. St. Louis: Monsanto Company

  • Wei YH, Lee HC (2002) Oxidative stress, mitochondrial DNA mutation, and impairment of antioxidant enzymes in aging. Exp Biol Med 227:671–682

    Article  CAS  Google Scholar 

  • Williams GC (1957) Pleiotropy, natural selection, and the evolution of senescence. Evolution 11:398–411

    Article  Google Scholar 

  • Yang RL, Shi YH, Hao G, Li W, Le GW (2008) Increasing oxidative stress with progressive hyperlipidemia in human: relation between malondialdehyde and atherogenic index. J Clin Biochem Nutr 43:154–158

    Article  PubMed  PubMed Central  Google Scholar 

  • You H, Mak TW (2005) Crosstalk between p53 and FOXO transcription factors. Cell Cycle 4:37–38

    Article  CAS  PubMed  Google Scholar 

  • Zahn JM, Kim SK (2007) Systems biology of aging in four species. Curr Opin Biotechnol 18:355–359

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zhao S, Fernald RD (2005) Comprehensive algorithm for quantitative real-time polymerase chain reaction. J Comput Biol 12:1047–1064

    Article  CAS  PubMed  Google Scholar 

  • Zulueta JJ, Sawhney R, Yu FS, Cote CC, Hassoun PM (1997) Intracellular generation of reactive oxygen species in endothelial cells exposed to anoxia-reoxygenation. Am J Phys Lung Cell Mol Phys 272:L897–L902

    CAS  Google Scholar 

Download references

Acknowledgments

We acknowledge the grant support from the National Natural Science Foundation of China (U1706203), the Fundamental Research Funds for the Central Universities (201841001), the key Research and Development Program of Shandong Province (2016ZDJQ0208), Youth Talent Program Supported by Laboratory for Marine Fisheries Science and Food Production Processes (2018-MFS-T06) and Taishan Scholar Project Fund of Shandong Province of China.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Shi Wang.

Ethics declarations

Conflict of Interest

The authors declare that they have no conflict of interest.

Additional information

Publisher’s Note

Springer to jurisdictional claims in published maps and institutional affiliations.

Electronic Supplementary Material

ESM 1

(DOCX 2462 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lian, S., Wang, J., Zhang, L. et al. Integration of Biochemical, Cellular, and Genetic Indicators for Understanding the Aging Process in a Bivalve Mollusk Chlamys farreri. Mar Biotechnol 21, 718–730 (2019). https://doi.org/10.1007/s10126-019-09917-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10126-019-09917-7

Keywords

Navigation