Skip to main content

Advertisement

Log in

First Investigation of Seasonal Concentration Behaviors and Sources Assessment of Aliphatic Hydrocarbon in Waters and Sediments from Wadi El Bey, Tunisia

  • Original Research
  • Published:
Archives of Environmental Contamination and Toxicology Aims and scope Submit manuscript

Abstract

The contents, composition profiles, and sources of aliphatic hydrocarbons were examined in surface sediment and water samples collected from Wadi El Bey, in Tunisia, during different year seasons in 14 stations receiving domestic effluent, industrial discharge, and agricultural drainage wastes. The target substances were analyzed by gas chromatography coupled with mass spectrometric detection (GC/MS). Total concentrations of n-alkanes (n-C14-n-C38) ranged from 0.08 ± 0.01 to 18.14 ± 0.1 µg/L in waters and 0.22 ± 0.04 to 31.9 ± 24.6 µg/g in sediments, while total aliphatic fraction ranged from 0.08 ± 0.01 to 196 ± 140 µg/L in waters and 0.22 ± 0.04 to 1977 ± 1219 µg/g in sediments, which means that almost all sites were affected by hydrocarbon contents in sediments exceeding the recommended limit (100 µg/g). Various diagnostic indices (ADIs) were used to identify the hydrocarbon sources, namely the concentration ratios of individual compounds (n-C17/pristane, n-C18/phytane, pristane/phytane, n-C29/n-C17, n-C31/n-C19) as well as cumulative quantities (Carbon Preference Index, natural n-alkanes ratio, terrigenous/aquatic compounds ratio, unresolved complex mixture percentage, low molecular weight vs. high molecular weight homologues, Alkane Proxy and Terrestrial Marine Discriminants). In general, these indexes indicated that the origin of aliphatic hydrocarbons affecting sediments and waters of Wadi El Bey were linked to both biogenic and petrogenic inputs, attesting the impact of plankton and terrestrial plants and of oil contamination, respectively. The average carbon chain length computation (ACL), used to further index the chemical environment, ranged from 25.5 to 31.1 in sediments and 47.9–116 in waters. This finding could depend on the severe disturbances suffered by the ecosystem as a consequence of heavy anthropogenic inputs. Petroleum contamination associated with high eutrophication rates in Wadi El Bey must be strictly controlled, due to possible harmful effects induced on ecosystem and humans.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  • Adebowale KO, Agunbiade FO, Olu-Owolabi BI (2008) Impacts of natural and anthropogenic multiple sources of pollution on the environmental conditions of Ondo State coastal water, Nigeria. Electron J Environ Agr Food Chem 7(4):2797–2811

    CAS  Google Scholar 

  • Aloulou F, Kallel M, Dammak M, Elleuch B, Saliot A (2010) Even-numbered n- alkanes/n-alkenes predominance in surface sediments of Gabes Gulf in Tunisia. Environ Earth Sci 61:1–10

    CAS  Google Scholar 

  • ANPE (2007) Control of water pollution, Annual Report

  • Asia L, Mazouz S, Guilliano M, Doumenq P, Mille G (2009) Occurence and distribution of hydrocarbons in surface sediments from Marseille Bay (France). Mar Pollut Bull 58:443–451

    CAS  Google Scholar 

  • Barhoumi B, Le Menach K, Dévier MH, Ameur WB, Etcheber H, Budzinski H, Cachot J, Driss MR (2013) Polycyclic aromatic hydrocarbons (PAHs) in surface sediments from the Bizerte lagoon, Tunisia: levels, sources and toxicological significance. Environ Monit Assess 186:2653–2669

    Google Scholar 

  • Blott SJ, Pye K (2001) Gradistat a grain size distribution and statistics package for the analysis of unconsolidated sediments. Earth Surf Process Landf 26:1237–1248

    Google Scholar 

  • Blumer M, Guillard RRL, Chase T (1971) Hydrocarbons of marine phytoplankton. Mar Biol 8:183

    CAS  Google Scholar 

  • Bouloubassi I, Saliot A (1993) Investigation of anthropogenic and natural organic inputs in estuarine sediments using hydrocarbon markers (NAH, LAB, PAH). Oceanol Act 16:145–161

    CAS  Google Scholar 

  • Bouzid S, Raissouni A, Khannous S, El Arrim A, Bouloubassi I, Saliot A, Er-Raioui H (2012) Distribution and origin of aliphatic hydrocarbons in surface sediments of strategical areas of the Western Moroccan Mediterranean Sea. Open Environ Pollut Toxicol J Suppl 1-M3(3):13–22

    Google Scholar 

  • Bush RT, McInerney FA (2015) Influence of temperature and C4 abundance on n-alkane chain length distributions across the central USA. Org Geochem 79:65–73

    CAS  Google Scholar 

  • Cavalcante RM, Sousa FW, Nascimento RF, Silveira ER, Freire GSS (2009) The impact of urbanization on tropical mangroves (Fortaleza, Brazil): evidence from PAH distribution in sediments. J Environ Manag 91:328–335

    CAS  Google Scholar 

  • Cecinato A, Balducci C, Nervegna G (2009) Occurrence of cocaine in the air of the World’s cities an emerging problem: a new tool to investigate the social incidence of drugs. Sci Total Environ 407:1683–1690

    CAS  Google Scholar 

  • Chen CW, Chen CF, Dong CD, Tu YT (2012) Composition and source apportionment of PAHs in sediments at river mouths and channel in Kaohsiung Harbor, Taiwan. J Environ Monit 14:105–115

    CAS  Google Scholar 

  • Cheng Y, Sheng GY, Min YS, Shao B, Pan X, Chen LM (1999) Distributions and sources of n-alkanes in aerosols from the Pearl River delta and their changes with seasons and function zones. Acta Sci Circumstan 19(1):96–100

    CAS  Google Scholar 

  • Choudhary P, Routh J, Chakrapani GJ (2010) Organic geochemical record of increased productivity in Lake Naukuchiyatal, Kumaun Himalayas, India. Environ Earth Sci 60:837–843

    CAS  Google Scholar 

  • Cincinelli A, Del Bubba M, Martellini T, Gambaro A, Lepri L (2007) Gas-particle concentration and distribution of n-alkanes and polycyclic aromatic hydrocarbons in the atmosphere of Prato (Italy). Chemosphere 68:472–474

    CAS  Google Scholar 

  • Cincinelli A, Martellini T, Bittoni L et al (2008) Natural and anthropogenic hydrocarbons in the water column of the Ross Sea (Antarctica). J Mar Syst 73:208–220

    Google Scholar 

  • Commendatore MG, Esteves JL (2004) Natural and anthropogenic hydrocarbons in sediments from the Chubut River (Patagonia, Argentina). Mar Pollut Bull 48:910–918

    CAS  Google Scholar 

  • Commendatore MG, Nievas ML, Amin O, Esteves JL (2012) Sources and distribution of aliphatic and polyaromatic hydrocarbons in coastal sediments from the Ushuaia Bay (Tierra del Fuego, Patagonia, Argentina). Mar Environ Res 74:20–31

    CAS  Google Scholar 

  • Cripps GC (1989) Problems in the identification of anthropogenic hydrocarbons against natural background levels in the Antarctic. Antart Sci 1:307–312

    Google Scholar 

  • Dalia MS, Salem A, Abou-Elmagd F, Morsy M, El Nemr A, El-Sikaily A, Khaled A (2014) The monitoring and risk assessment of aliphatic and aromatic hydrocarbons in sediments of the Red Sea, Egypt. Egyptian J Aquatic Res 40:333–348

    Google Scholar 

  • Damas EYC, Clemente ACN, Medina C et al (2009) Petroleum hydrocarbon assessment in the sediments of the northeastern Havana littoral, Cuba. Revista Internacional de Contaminación Ambiental 25(1):5–14

    Google Scholar 

  • El Deeb KZ, Said TO, El Naggar MH, Shreadah MA (2007) Distribution and sources of aliphatic and polycyclic aromatic hydrocarbons in surface sediments, fish and bivalves of Abu Qir Bay (Egyptian Mediterranean Sea). Bull Environ Contam Toxicol 78:373–379

    Google Scholar 

  • El Nemr A, El-Sadaawy MA, Khaled A, Draz SO (2013) Aliphatic and polycyclic aromatic hydrocarbons in the surface sediments of the Mediterranean: assessment and source recognition of petroleum hydrocarbons. Environ Monit Assess 185:4571–4589

    CAS  Google Scholar 

  • Eseme E, Littke R, Agyingi CM (2006) Geochemical characterization of a Cretaceous black shale from the Mamfe Basin, Cameroon. Pet Geosci 12:69–74

    CAS  Google Scholar 

  • Fagbote OE, Olanipekun EO (2013) Characterization and sources of aliphatic hydrocarbons of the sediments of River Oluwa at Agbabu Bitumen deposit area, Western Nigeria. J Sci Res Rep 2(1):228–248

    Google Scholar 

  • Feng JL, Xi NN, Zhang F, Liu SH, Sun JH (2016) Distribution characteristics and source apportionment of n-alkanes in water from Yellow River in Henan Section. Huan Jing Ke Xue 37(3):893–899

    CAS  Google Scholar 

  • Ficken KJ, Li B, Swain DL, Eglinton G (2000) An n-alkane proxy for the sedimentary input of submerged/floating freshwater aquatic macrophytes. Org Geochem 31:745–749

    CAS  Google Scholar 

  • Folk LR, Ward WC (1957) Brazos River bar: a study in the significance of grain size parameters. J Sediment Petrol 27:3–26

    Google Scholar 

  • Fourati R, Tedetti M, Guigue C et al (2017) Sources and spatial distribution of dissolved aliphatic and polycyclic aromatic hydrocarbons in surface coastal waters of the Gulf of Gabès (Tunisia. Progr Oceanogr, Southern Mediterranean Sea). https://doi.org/10.1016/j.pocean.2017.02.001.007

    Book  Google Scholar 

  • Gasmi T, Khouni I, Ghrabi A (2016) Assessment of heavy metals pollution using multivariate statistical analysis methods in Wadi El Bey (Tunisia). Desalination Water Treatment ISSN: 1944-3994 (Print) 1944-3986

  • Gdara I, Zrafi I, Balducci C, Cecinato A, Ghrabi A (2017) Seasonal distribution, source identification, and toxicological risk assessment of polycyclic aromatic hydrocarbons (PAHs) in sediments from Wadi El Bey Watershed in Tunisia. Arch Environ Contam Toxicol. https://doi.org/10.1007/s00244-017-0440-7

    Article  Google Scholar 

  • Gdara I, Zrafi I, Balducci C, Cecinato A, Ghrabi A (2018) Seasonal occurrence, source evaluation and ecological risk assessment of polycyclic aromatic hydrocarbons in industrial and agricultural effluents discharged in Wagdi El Bey (Tunisia). Environ Geochem Health. https://doi.org/10.1007/s10653-018-0075-2

    Article  Google Scholar 

  • Goutx M, Saliot A (1980) Relationship between dissolved and particulate fatty acids and hydrocarbons, chlorophyll and zooplankton biomass in Ville franche Bay, Mediterranean Sea. Mar Chem 8:299–318

    CAS  Google Scholar 

  • Guigue C, Tedetti M, Giorgi S, Goutx M (2011) Occurrence and distribution of hydrocarbons in the surface microlayer and subsurface water from the urban coastal marine area off Marseilles, Northwestern Mediterranean Sea. Mar Pollut Bull 62:2741–2752

    CAS  Google Scholar 

  • Guo Z, Lin T, Zhang G, Yang Z, Fang M (2006) High-resolution depositional records of polycyclic aromatic hydrocarbons in the central continental shelf mud of the East China Sea. Environ Sci Technol 40(17):5304–5311

    CAS  Google Scholar 

  • Guo M, He C, Yang ZF et al (2009) Occurrence of aliphatic hydrocarbons in water, suspended particulate matter and sediments of Daliao River System, China. Bull Environ Contam Toxicol 84:519–523. https://doi.org/10.1007/s00128-010-9992-1

    Article  CAS  Google Scholar 

  • Harji RR, Yvenat A, Bhosle NB (2008) Sources of hydrocarbons in sediments of the Mandovi estuary and the Marmugoa harbour, west coast of India. Environ Int 34:959–965

    Google Scholar 

  • Hu NJ, Huang P, Liu JH, Ma DY, Shi XF, Mao J, Liu L (2014) Characterization and source apportionment of polycyclic aromatic hydrocarbons (PAHs) in sediments in the Yellow River Estuary, China. Environ Earth Sci 71:873–883

    CAS  Google Scholar 

  • Huang W, Wang Z, Yan W (2012) Distribution and sources of polycyclic aromatic hydrocarbons (PAHs) in sediments from Zhanjiang Bay and Leizhou Bay, South China. Mar Pollut Bull 64:1962–1969

    CAS  Google Scholar 

  • Jeng WL (2006) Higher plant n-alkane average chain length as an indicator of petrogenic hydrocarbon contamination in marine sediments. Mar Chem 102:242–251

    CAS  Google Scholar 

  • Kanzari F, Syakti AD, Asia L, Malleret L, Mille G, Jamoussi B, Abderrabba M, Doumenq P (2012) Aliphatic hydrocarbons, polycyclic aromatic hydrocarbons, polychlorinated biphenyls, organochlorine, and organophosphorous pesticides in surface sediments from the Arc river and the Berre lagoon, France. Environ Sci Pollut Res 19(2):559–576

    CAS  Google Scholar 

  • Kessabi K, Annabi A, Hadj Hassine AI et al (2013) Possible chemical causes of skeletal deformities in natural populations of Aphanius fasciatus collected from the Tunisian coast. Chemosphere 90:2683–2689 (PMID: 23260252)

    CAS  Google Scholar 

  • Khadhar S, Higashi T, Hamdi H, Matsuyama S, Charef A (2010) Distribution of 16 EPA-priority polycyclic aromatic hydrocarbons (PAHs) in sludges collected from nine Tunisian wastewater treatment plants. J Haz Mat 183:98–102

    CAS  Google Scholar 

  • Khadhar S, Mlayah A, Chekirben A, Charef A, Methammam M, Shabou N, Zayanani K (2013) Vecteur de la pollution metallique du bassin versant de l’Oued El Bey vers le Golfe de Tunis, Tunisie) (Vector of metal pollution of the watershed of Wadi El Bey towards the Gulf of Tunis (Tunisia)). Hydro Sci J 58:1803–1812

    CAS  Google Scholar 

  • Khedir-Ghenim Z, Zrafi-Nouira I, Bahri R, Belayouni H, Hammami M, Rouabhia M, Saidane-Mosbahi D (2009) Identification and distribution of petroleum hydrocarbons in sediments, seawater and Ruditapes decussatus collected from a Mediterranean Sea site. Int J Water 5(1):35–50

    CAS  Google Scholar 

  • Kouzayha A, Iskandarani MA, Mokh S, Rabaa AR, Budzinski H, Jaber F (2011) Optimization of a solid-phase extraction method using centrifugation for the determination of 16 polycyclic aromatic hydrocarbons in water. J Agric Food Chem 59:7592–7600

    CAS  Google Scholar 

  • Li S, Zhang S, Dong H, Zhao Q, Cao C (2015) Presence of aliphatic and polycyclic aromatic hydrocarbons in near-surface sediments of an oil spill area in Bohai Sea. Mar Pollut Bull 64:169–175

    Google Scholar 

  • Lipiatou E, Saliot A (1991) Hydrocarbon contamination of the Rhone delta and western Mediterranean. Mar Pollut Bull 22:297–304

    CAS  Google Scholar 

  • Liu L-Y, Wang J-Z, Guan Y-F, Zeng EY (2012) Use of aliphatic hydrocarbons to infer terrestrial organic matter in coastal marine sediments of China. Mar Pollut Bull 64:1940–1946

    CAS  Google Scholar 

  • Louati A, Elleuch B, Kallel M, Oudot J, Saliot A, Dagaut J (2001) Hydrocarbon contamination of coastal sediments from the Sfax area (Tunisia), Mediterranean Sea. Mar Pollut Bull 42:445–452

    CAS  Google Scholar 

  • Lu Y, Song S, Wang R et al (2014) Impacts of soil and water pollution on food safety and health risks in China. Environ Int 77:5–15

    Google Scholar 

  • Méjanelle L, Rivière B, Pinturier L, Khripounoff A, Baudin DJ (2017) Aliphatic hydrocarbons and triterpenes of the Congo deep-sea fan. Deep Sea Res II 142:109–124

    Google Scholar 

  • Meyers PA (2003) Application of organic geochemistry to paleolimnological reconstruction: a summary of examples from the Laurentian Great Lake. Org Geochem 34:261–289

    CAS  Google Scholar 

  • Mhamdi F, Khouni I, Ghrabi A (2016) Diagnosis and characteristics of water quality along the Wadi El Bey River (Tunisia). Coagulation/flocculation essays of textile effluents discharged into the Wadi. Desalination and Water Treatment ISSN: 1944-3994 (Print) 1944-3986

  • Mille G, Asia L, Guiliano M, Malleret L, Doumenq P (2007) Hydrocarbons in coastal sediments from the Mediterranean sea (Gulf of Fos area, France). Mar Pollut Bull 54:566–575

    CAS  Google Scholar 

  • Mirsadeghi SA, Zakaria MP, Yap CK, Gobas F (2013) Evaluation of the potential bioaccumulation ability of the blood cockle (Anadara granosa) for assessment of environmental matrices of mudflats. Sci Total Environ 454:584–597

    Google Scholar 

  • Mzoughi N, Chouba L (2011) Distribution and partitioning of aliphatic hydrocarbons and polycyclic aromatic hydrocarbons between water, suspended particulate matter, and sediment in harbours of the West coastal of the Gulf of Tunis (Tunisia). J Environ Monit 13:689

    CAS  Google Scholar 

  • Ouyang Y, Zhang JE, Ou LT (2006) Temporal and spatial distributions of sediment total organic carbon in an estuary river. J Environ Qual 35:93–100

    CAS  Google Scholar 

  • Oyo-Ita OE, Ekpo BO, Oros DR, Simoneit BRT (2010) Distributions and sources of aliphatic hydrocarbons and ketones in surface sediments from the Cross River estuary, S.E. Niger Delta, Nigeria. J App Sci Environ Sanit 5:1–11

    CAS  Google Scholar 

  • Palamuleni L, Mercy A (2015) Physico-chemical and microbial analysis of selected borehole water in Mahikeng, South Africa. Int J Environ Res Public Health 12:8619–8630. https://doi.org/10.3390/ijerph120808619

    Article  CAS  Google Scholar 

  • Paletto V, Commendatore MG, Esteves JL (2008) Hydrocarbon levels in sediments and bivalve mollusks from Bahía Nueva (Patagonia, Argentina): an assessment of probable origin and bioaccumulation factors. Mar Pollut Bull 56:2100–2105

    Google Scholar 

  • Peters KE, Walters CC, Moldowan JM (2005) Biomarkers and isotopes in the environment and human history, 2nd edn. Cambridge University Press, New York

    Google Scholar 

  • Petersen HI, Nytoft HP, Ratanasthien B, Foopatthanakamol A (2007) Oils from Cenozoic rift-basins in central and northern Thailand: source and thermal maturity. J Pet Geol 30:59–78

    CAS  Google Scholar 

  • Ranjbar Jafarabadi A, Riyahi Bakhtiari A, Aliabadian M, Shadmehri Toosi A (2017) Spatial distribution and composition of aliphatic hydrocarbons, polycyclic aromatic hydrocarbons and hopanes in superficial sediments of the coral reefs of the Persian Gulf, Iran. Environ Pollut 224:195–223

    Google Scholar 

  • Ranjbar Jafarabadi A, Riyahi Bakhtiari A, Hedouin L, Shadmehri Toosi A, Cappello T (2018a) Spatio-temporal variability, distribution and sources of n-alkanes and polycyclic aromatic hydrocarbons in reef surface sediments of Kharg and Lark coral reefs, Persian Gulf. Iran. Ecotoxicol Environ Saf 163–641:307–322

    Google Scholar 

  • Ranjbar Jafarabadi A, Riyahi Bakhtiari A, Aliabadian M, Hedouin L, Shadmehri Toosi A, Yap CK (2018b) First report of bioaccumulation and bioconcentration of aliphatic hydrocarbons (AHs) and persistent organic pollutants (PAHs, PCBs, and PCNs) and their effects on alcyonacea and scleractinian corals and their endosymbiotic algae from the Persian Gulf, Iran: inter- and intra-species differences. Sci Total Environ 627:141–157

    CAS  Google Scholar 

  • Readman JW, Fillmann G, Tolosa I, Bartocci J, Villeneuve JP, Cattini C, Mee LD (2002) Petroleum and PAH contamination of the Black Sea. Mar Pollut Bull 44:48–62

    CAS  Google Scholar 

  • Rogge WF, Hlldemann LM, Mazurek MA, Cass GR, Simoneit BRT (1993) Sources of fine organic aerosol. 4. Particulate abrasion products from leaf surfaces of urban plants. Environ Sci Tech 27:2700–2711

    CAS  Google Scholar 

  • Ruiz F, Abad M, Gala E, Gonzalez I, Aguila I, Gomez OA, Cantano M (2006) The present environmental scenario of El Melah Lagoon (NE Tunisia) and its evolution to a future sabkha. J Afr Ear Sci 44:289–302

    Google Scholar 

  • Sakari M, Zakaria MP, Lajis NH, Mohamed CAR, Bahry PS, Anita S (2008) Characterization, distribution, sources and origins of aliphatic hydrocarbons from surface sediment of Prai Strait, Penang, Malaysia: a widespread anthropogenic input. Environ. Asia 2:1–14

    Google Scholar 

  • Saliot A (1989) Natural hydrocarbons in seawater. In: Duursma EK, Dawson R (eds) Mar Organic Chemistry. Elsevier, Amsterdam, pp 327–374

    Google Scholar 

  • Schumacher BA (2002) Methods for the determination of total organic carbon (TOC) in soils and sediments. Ecol Risk Assess Support Cent 2002:1–23

    Google Scholar 

  • Shirneshan G, Bakhtiari AR, Memariani M (2017) Identifying the source of petroleum pollution in sediment cores of the southwest of the Caspian Sea using chemical fingerprinting of aliphatic and alicyclic hydrocarbons. Mar Pollut Bull 115:383–390

    CAS  Google Scholar 

  • Silva TR, Lopes SRP, Spörl G, Knoppers BA, Azevedo DA (2013) Evaluation of anthropogenic inputs of hydrocarbons in sediment cores from a tropical Brazilian estuarine system. Microchem J 109:178–188

    CAS  Google Scholar 

  • Simoneit BRT (1984) Organic matter of the troposphere—III. Characterization and sources of petroleum and pyrogenic residues in aerosols over the western United States. Atmos Environ 18:51–67

    CAS  Google Scholar 

  • Simoneit BRT, Sheng GY, Chen X, Fu JM, Zhang J, Xu Y (1991) Molecular marker study of extractable organic matter in aerosols from urban areas of China. Atmos Environ 25:2111–2129

    Google Scholar 

  • Syakti AD, Hidayati NV, Hilmi E, Piram A, Doumenq P (2013) Source apportionment of sedimentary hydrocarbons in the Segara Anakan Nature Reserve, Indonesia. Mar Pollut Bull 74:141–148

    CAS  Google Scholar 

  • Tam NFY, Ke L, Wang XH, Wong YS (2001) Contamination of polycyclic aromatic hydrocarbons in surface sediments of mangrove swamps. Environ Pollut 114:255–263

    CAS  Google Scholar 

  • Tarozo R, Frena M, Madureira LAS (2010) Geochemical markers as a tool to assess sedimentary organic matter sources of the Laguna estuarine system, South Brazil: aliphatic and polycyclic aromatic hydrocarbons. J Braz Chem Soc 21(12):2308–2318

    CAS  Google Scholar 

  • Taoufik G, Khouni I, Ghrabi A (2017) Assessment of physico-chemical and microbiological surface water quality using multivariate statistical techniques: a case study of the Wadi El-Bey River, Tunisia. Arab J Geosci 10:181

    Google Scholar 

  • ten Haven HL (1996) Applications and limitations of Mango’s light hydrocarbon parameters in petroleum correlation studies. Org Geochem 24:957–976

    Google Scholar 

  • Tolosa I, de Mora S, Sheikholeslami MR, Villeneuve JP, Bartocci JP, Cattini C (2004) Aliphatic and aromatic hydrocarbons in coastal Caspian Sea sediments. Mar Pollut Bull 48:44–60

    CAS  Google Scholar 

  • Trabelsi S, Driss MR (2005) Polycyclic aromatic hydrocarbons in superficial coastal sediments from Bizerte Lagoon, Tunisia. Mar Pollut Bull 50:344–359

    CAS  Google Scholar 

  • Vaezzadeh V, Zakaria MP, Shau-Hwai AT, Ibrahim ZZ, Mustafa S, Abootalebi Jahromi F, Masood N, Magam SM, Alkhadher SAA (2015a) Forensic investigation of aliphatic hydrocarbons in the sediments from selected mangrove ecosystems in the west coast of Peninsular Malaysia. Mar Pollut Bull 100:311–320

    CAS  Google Scholar 

  • Vaezzadeh V, Zakaria MP, Shau-Hwai AT et al (2015b) Forensic investigation of aliphatic hydrocarbons in the sediments from selected mangrove ecosystems in the west coast of Peninsular Malaysia. Mar Pollut Bull 100:311–320

    CAS  Google Scholar 

  • Volkman JK, Holdsworth DG, Neil GP, Bavor HJJR (1992) Identification of natural, anthropogenic and petroleum hydrocarbons in aquatic sediments. Sci Total Environ 112:203–219

    CAS  Google Scholar 

  • Wagener Ade L, Meniconi Mde F, Hamacher C et al (2012a) Hydrocarbons in sediments of a chronically contaminated bay: the challenge of source assignment. Mar Pollut Bull 64:284–294. https://doi.org/10.1016/j.marpolbul.2011.11.018

    Article  CAS  Google Scholar 

  • Wang XC, Sun S, Ma HQ, Liu Y (2006) Sources and distribution of aliphatic and polyaromatic hydrocarbons in sediments of Jiaozhou Bay, Qingdao (China). Mar Pollut Bull 52:129–138

    CAS  Google Scholar 

  • Wang C, Wang W, He S, Du J, Sun Z (2011) Sources and distribution of aliphatic and polycyclic aromatic hydrocarbons in Yellow River Delta Nature Reserve, China. Appl Geochem 26(8):1330–1336

    CAS  Google Scholar 

  • Wang M, Wang C, Hu X, Zhang H, He S, Lv S (2015) Distributions and sources of petroleum, aliphatic hydrocarbons and polycyclic aromatic hydrocarbons (PAHs) in surface sediments from Bohai Bay and its adjacent river, China. Mar Pollut Bull 90:88–94

    CAS  Google Scholar 

  • Wang J, Fu G, Li W et al (2018) The effects of two free-floating plants (Eichhornia crassipes and Pistia stratiotes) on the burrow morphology and water quality characteristics of pond loach (Misgurnus anguilli caudatus) habitat. Aquaculture Fish 3:22–29

    CAS  Google Scholar 

  • Wagener Ade L, Meniconi Mde F, Hamacher C et al (2012b) Hydrocarbons in sediments of a chronically contaminated bay: the challenge of source assignment. Mar Pollut Bull 64:284–294. https://doi.org/10.1016/j.marpolbul.2011.11.018

    Article  CAS  Google Scholar 

  • Xiang S, Zeng F, Wang G, Yu J (2013) Environmental evolution of the south margin of Qaidam Basin reconstructed from the Holocene loess deposit by n-alkane and pollen records. J Earth Sci 24(2):170–178

    Google Scholar 

  • Yazis M, Asia L, Piram A, Buchari B, Doumenq P, Syakti A (2016) Aliphatic hydrocarbon content in surface sediment from Jakarta Bay, Indonesia. IOP Conf Ser Mater Sci Eng 107:012007

    Google Scholar 

  • Yu Y, Li Y, Guo Z, Zou H (2016) Distribution and sources of n-alkanes in surface sediments of Taihu Lake, China. Arch Environ Protect 42:49–55

    Google Scholar 

  • Yusoff HB, Assim ZB, Mohamad SB (2012) Aliphatic hydrocarbons in surface sediments from South China Sea off Kuching Division, Sarawak. Mal J Anal Sci 16(1):1–11

    Google Scholar 

  • Zaghden H, Kallel M, Louati A, Elleuch B, Oudot J, Saliot A (2005) Hydrocarbons in surface sediments from the Sfax coastal zone, (Tunisia) Mediterranean Sea. Mar Pollut Bull 50:1287–1294

    CAS  Google Scholar 

  • Zaghden H, Kallel M, Elleuch B, Oudot J, Saliot A (2007) Sources and distribution of aliphatic and polyaromatic hydrocarbons in sediments of Sfax, Tunisia, Mediterranean Sea. Mar Chem 105:70–89

    CAS  Google Scholar 

  • Zaghden H, Kallel M, Elleuch B, Oudot J, Saliot A, Sayadi S (2014) Evaluation of hydrocarbon pollution in marine sediments of sfax coastal areas from the Gabes Gulf Tunisia, Mediterranean Sea. Environ Earth Sci 72(4):1073–1082

    CAS  Google Scholar 

  • Zaghden H, Tedetti M, Sayadi S, Serbaji MM, Elleuch B, Saliot A (2017) Origin and distribution of hydrocarbons and organicmatter in the surficial sediments of the Sfax-Kerkennah channel (Tunisia, Southern Mediterranean Sea). Mar Pollut Bull 117(1–2):414–428

    CAS  Google Scholar 

  • Zrafi I, Khedir-Ghenim Z, Barhri R, Cheraief L, Rouabhia M, Saidane-Mosbahi D (2008) Hydrocarbon pollution in the sediment from the Jarzouna-Bizerte coastal area of Tunisia (Mediterranean Sea). Bull Environ Contam Toxicol 80:566–572

    Google Scholar 

  • Zrafi I, Bakhrouf A, Rouabhia M, Saidane-Mosbahi D (2013) Aliphatic and aromatic biomarkers for petroleum hydrocarbon monitoring in Khniss Tunisian-Coast (Mediterranean Sea). Proc Environ Sci 18:211–220

    Google Scholar 

  • Zrafi-Nouira I, Khedir-Ghenim Z, Bahri R, Cheraeif L, Rouabhia M, Saidane-Mosbahi D (2009) Hydrocarbon in seawater and interstitial water of Jarzouna-Bizerte Coastal of Tunisia (Mediterranean Sea): petroleum origin investigation around refinery rejection place. Water Air Soil Pollut 202:19–31

    CAS  Google Scholar 

Download references

Funding

Funding was provided by Ministère de l’Enseignement Supérieur, de la Recherche Scientifique et des Technologies de l'Information et de la Communication (Grant No. 1000 euro).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Imen Gdara.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gdara, I., Zrafi, I., Balducci, C. et al. First Investigation of Seasonal Concentration Behaviors and Sources Assessment of Aliphatic Hydrocarbon in Waters and Sediments from Wadi El Bey, Tunisia. Arch Environ Contam Toxicol 78, 1–19 (2020). https://doi.org/10.1007/s00244-019-00669-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00244-019-00669-y

Navigation