Skip to main content

Advertisement

Log in

A method for decomposing multivariate time series into a causal hierarchy within specific frequency bands

  • Published:
Journal of Computational Neuroscience Aims and scope Submit manuscript

Abstract

We propose a method - Frequency extracted hierarchical decomposition (FEHD) - for studying multivariate time series that identifies linear combinations of its components that possess a causally hierarchical structure - the method orders the components so that those at the “top” of the hierarchy drive those below. The method shares many of the features of the “hierarchical decomposition” method of Repucci et al. (Annals of Biomedical Engineering, 29, 1135–1149, 2001) but makes a crucial advance - the proposed method is capable of determining this causal hierarchy over arbitrarily specified frequency bands. Additionally, a novel minimization strategy is used to generate the decomposition resulting in an increase in stability, reliability, and an improvement in the sensitivity to model parameters. We demonstrate the utility of the method by applying it to both artificial time series constructed to have specific causal graphs, and to the EEG of healthy volunteers and patient subjects who are recovering from a severe brain injury.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15

Similar content being viewed by others

References

  • Akaike, H. (1974). A new look at the statistical model identification. IEEE Transactions on automatic control AC-19(6).

  • Akaike, H. (1998). Information theory and an extension of the maximum likelihood principle. In: Selected Papers of Hirotugu Akaike, pp. 199–213. Springer.

  • Baker, J.L., Ryou, J.-W., Wei, X.F., Butson, C.R., Schiff, N.D., Purpura, K.P. (2016). Robust modulation of arousal regulation, performance, and frontostriatal activity through central thalamic deep brain stimulation in healthy nonhuman primates. Journal of Neurophysiology, 116(5), 2383–2404.

    Article  Google Scholar 

  • Bastos, A.M., Vezoli, J., Bosman, C.A., Schoffelen, J.-M., Oostenveld, R., Dowdall, J.R., Weerd, P.D., Kennedy, H., Fries, P. (2015). Visual areas exert feedforward and feedback influences through distinct frequency channels. Neuron, 85, 390–401.

    Article  CAS  Google Scholar 

  • Besserve, M., Scholkopf, B., Logothetis, N.K., Panzeri, S. (2010). Causal relationaships between frequnecy bands of extracellular signals in visual cortex revealed by an information theoretic analysis. Journal Computational Neuroscience, 29, 547–566.

    Article  Google Scholar 

  • Bosman, C.A., Schoffelen, J.-M., Brunet, N., Oostenveld, R., Bastos, A.M., Womelsdorf, T., Rubehn, B., Stieglitz, T., Weerd, P.D., Fries, P. (2012). Attentional stimulus selection through selective synchronization between monkey visual areas. Neuron, 75, 875–888.

    Article  CAS  Google Scholar 

  • Chen, Y., Bressler, S., Ding, M. (2006). Frequency decomposition of conditional granger causality and application to multivariate neural field potential data. Journal of Neuroscience Methods, 150, 228–237.

    Article  Google Scholar 

  • Drover, J.D., Conte, M.M., Goldfine, A.M., Voss, H.U., Victor, J.D., Schiff, N.D. (2011). Are low frequency oscillations in the eeg of severely injured brains a marker for functional reserve of cortical neurons? Poster session presented at: Society for Neuroscience, November 15, Washington DC.

  • Forgacs, P.B., Frey, H.P., Velazquez, A., Thompson, S., Brodie, D., Moitra, V., Rabani, L., Park, S., Agarwal, S., Falo, M.C., Schiff, N.D., Claassen, J. (2017). Dynamic regimes of neocortical activity linked to corticothalamic integrity correlate with outcomes in acute anoxic brain injury after cardiac arrest. Ann Clin Transl Neurol., 4(2), 119–129.

    Article  Google Scholar 

  • Geweke, J. (1982). Measurement of linear dependance and feedback between multiple time series. Journal American Statistical Association, 77, 304–13.

    Article  Google Scholar 

  • Goldman, M.S. (2009). Memory without feedback in a neural network. Neuron, 61, 621–634.

    Article  CAS  Google Scholar 

  • Jeanmonod, D., Magnin, M., Morel, A. (1996). Low-threshold calcium spike bursts in the human thalamus. common physiopathology for sensory, motor and limbic positive symptoms. Brain: A Journal of Neurology, 119, 363–75.

    Article  Google Scholar 

  • Killian, N.J., & Buffalo, E.A. (2014). Distinct frequnecies mark the direction of cortical communication. PNAS, 111(40), 14316–14317.

    Article  CAS  Google Scholar 

  • Kus, R., Kaminski, M., Blinowska, K.J. (2004). Determination of eeg activity propogation Pair-wise versus multichannel estimate. IEEE Transactions on Biomedical Engineering, 51(9), 1501–1510.

    Article  Google Scholar 

  • Laureys, S., & Schiff, N.D. (2012). Coma and consciousness: Paradigms (re)framed by neuroimaging. NeuroImage, 61, 478–491.

    Article  Google Scholar 

  • Llinas, R.R., Ribary, U., Jeanmonod, D., Kronberg, E., Mitra, P.P. (1999). Thalamocortical dysrhythmia: A neurological and neuropsychiatric syndrone characterized by magnetoencephalography. PNAS, 96 (26), 15222–15227.

    Article  CAS  Google Scholar 

  • Llinas, R., Urbano, F.J., Leznik, E., Ramizrez, R.R., van Marle, H.J.F. (2005). Rhythmic and dysrhythmic thalamocortical dynamics: Gaba systems and the edge effect. TRENDS Neurosciences, 28(6), 325–333.

    Article  CAS  Google Scholar 

  • Lopes da Silva, F. (2013). Eeg and meg: relevance to neuroscience. Neuron, 80(5), 1112–1128.

    Article  CAS  Google Scholar 

  • Pfurtschellar, G., & Lopes da Silva, F.H. (1999). Event-related eeg/meg synchronization and desynchronization: basic principles. Clinical Neurophysiology, 110(11), 1842–57.

    Article  Google Scholar 

  • Repucci, M.A., Schiff, N.D., Victor, J.D. (2001). General strategy for hierarchical decomposition of multivariate time series Implications for temporal lobe seizures. Annals of Biomedical Engineering, 29, 1135–1149.

    Article  CAS  Google Scholar 

  • Schiff, N., Victor, J.D., Canel, A. (1995). Nonlinear autoregressive analysis of the 3 second ictal EEG: implications for underlying dynamics. Biological Cybernetics, 72, 527–532.

    Article  CAS  Google Scholar 

  • Schiff, N.D., Victor, J.D., Canel, A., Labar, D.R. (1995). Characteristic nonlinearities of the 3 second ictal EEG identified by nonlinear autoregressive analysis. Biological Cybernetics, 72, 519–526.

    Article  CAS  Google Scholar 

  • Schiff, N.D. (2016). Brain function and responsiveness in disorders of consciousness, chapter Mesocircuit mechanisms underlying recovery of consciousness following severe brain injuries: models and predictions. Springer Verlag.

  • Schiff, N.D. (2017). Uncovering hidden integrative cerebral function in the intensive care unit schiff. Brain: A Journal of Neurology, 140(9), 2259–2262.

    Article  Google Scholar 

  • Schiff, N.D., Nauval, T., Victor, J.D. (2014). Large-scale brain dynamics in disorders of consciousness. Current Opinion in Neurobiology, 25, 7–14.

    Article  CAS  Google Scholar 

  • Schomer, D., & da Silva, L. (2011). Niedermeyer’s Electroencephalography. Basic Principles, clinical applications, and related fields. Lippincott Williams & Wilkins 6th edition.

  • Silva, L.R., Amitai, Y., Connors, B.W. (1991). Intrinsic oscillations of neocortex generated by layer 5 pyramidal neurons. Science, 251(4992), 432–435.

    Article  CAS  Google Scholar 

  • Songsiri, J., Dahl, J., Vandenberghe, L. (2010). Graphical models of autoregressive processes. In Eldar, Y., & Palomar, D. (Eds.) Convex optimization in signal processing and communications (pp. 89–116). Cambridge: Cambridge University Press.

  • van Kerkoerle, T., Self, M.W., Dagnino, B., Gariel-Mathis, M.-A., Poort, J., van der Togt, C., Roelfsema, P.R. (2014). Alpha and gamma oscillations characterize feedback and feedforward pro- cessing in monkey visual cortex. PNAS, 111(40), 14332–14341.

    Article  Google Scholar 

  • Williams, S.T., Conte, M.M., Goldfine, A.M., Noirhomme, Q., Gosseries, O., Thonnard, M., Beattie, B., Hersh, J., Katz, D.I., Victor, J.D., Laureys, S., Schiff, N.D. (2013). Common resting brain dynamics indicate a possible mechanism underlying zolpidem response in severe brain injury. eLife.

  • Worden, M.S., Foxe, J.J., Wang, N., Simpson, G.V. (2000). Anticipatory biasing of visuospatial attention indexed by retinotopically specific α-band electroencephalography increases over occipital cortex. The Journal of Neuroscience, 20, RC63.

    Article  CAS  Google Scholar 

Download references

Acknowledgments

We would like to acknowledge the NIH-NINDS RO1 HD91251, the James S. McDonnell Foundation and the Jerold B. Katz Foundation for their support. We would also like to thank Jonathan Victor for many helpful conversations and suggestions, and Esteban Fridman with assistance with displays of structural and metabolic brain imaging data. Finally, we would like to thank Mary Conte for reading the manuscript and offering an enormous amount of helpful feedback.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jonathan D. Drover.

Additional information

Action Editor: Abraham Zvi Snyder

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Drover, J.D., Schiff, N.D. A method for decomposing multivariate time series into a causal hierarchy within specific frequency bands. J Comput Neurosci 45, 59–82 (2018). https://doi.org/10.1007/s10827-018-0691-y

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10827-018-0691-y

Keywords

Navigation