Skip to main content
Log in

Probes for energy transduction in membranes

  • Review
  • Published:
Journal of Bioenergetics and Biomembranes Aims and scope Submit manuscript

Conclusions

It is possible to conclude, after the discussion on the application of different probes to energy-transducing membranes, that the efforts in the direction of the elucidation of the mechanism of energy conservation have not been wasted. Despite the lack of a final answer to the question whether the coupling device is chemiosmotic, chemical, or conformational in nature, a number of new important experiments have been performed which will finally contribute to the solution of the problem.

Apart from the important characterization of a number of physical parameters regarding the phospholipid environment and the interaction among proteins in the membrane, data concerning the onset of membrane potential(s) and pH gradients associated with energy conservation appear convincing. In fact, from different types of approach (lipophylic ions, charged fluorescent probes, carotenoids, and merocyanines) a common conclusion can be reached, namely that electrical potentials are set at the level of the mitochondrial and other energy-transducing membranes. There is still some controversy as to whether the potential is set across the entire thickness or only a small portion of the membrane.

It appears also well established that pH gradients are set across the coupling membrane during energy conservation and that pH gradients and membrane potentials have specific correlations. Whether the conclusions reached with the probe technique are perfectly in line with the chemiosmotic hypothesis, require some modification of it, or may also fit with a chemical hypothesis would go beyond the purpose of the present discussion. It seems, however, that some predictions of the chemiosmotic hypothesis have been, at least qualitatively, confirmed by the use of the probe approach described above.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. D. Chapman and G.H. Dodd, in:Structure and Function of Biological Membranes, L.I. Rothfield (ed.), Academic Press, New York and London, 1971, pp. 13–81.

    Google Scholar 

  2. G.K. Radda and J. Vanderkooi,Biochim. Biophys. Acta,265 (1972) 509–549.

    Google Scholar 

  3. A.D. Keith, M. Sharnoff, and G.E. Cohn,Biochim. Biophys. Acta,300 (1973) 379–419.

    Google Scholar 

  4. S. Schreier-Muccillo and I.C.P. Smith, in:Progress in Surface and Membrane Science, J.F. Danielli, M.D. Rosenberg, and D.A. Cadenhead (eds.), Academic Press, New York and London, Vol. 9 (1973) pp. 318–390.

    Google Scholar 

  5. A. Azzi,Q. Rev. Biophys. 8 (1975) 237–316.

    Google Scholar 

  6. R.A. Badley, W.G. Martin, and H. Schneider,Biochem. 12 (1973) 268–275.

    Google Scholar 

  7. W. Lesslauer, J. Cain, and J.K. Blasie,Biochim. Biophys. Acta,241 (1971) 547–566.

    Google Scholar 

  8. B. Chance,Proc. Int. Congr. Biophys. (1973) Moscow.

  9. A.S. Waggoner and L. Stryer,Proc. Natl. Acad. Sci., U.S.A.,67 (1970) 579–589.

    Google Scholar 

  10. J. Seelig,J. Am. Chem. Soc.,92 (1970) 3881–3887.

    Google Scholar 

  11. J.A. Berden and E.C. Slater,Biochim. Biophys. Acta,256 (1972) 199–215.

    Google Scholar 

  12. B. Chance, A. Azzi, I.Y. Lee, C.P. Lee, and L. Mela, in:Mitochondrial Structure and Compartmentation, FEBS Symposium, L. Ernster and Z. Drahota (eds), Academic Press, New York and London, vol. 17, (1969) pp. 233–273.

    Google Scholar 

  13. A. Azzi, M.A. Bragadin, A.M. Tamburro, and M. Santato,J. Biol. Chem.,248 (1973) 5520–5526.

    Google Scholar 

  14. P.M. Vignais, P. Deveaux, and A. Colbeau, (1974) in:Biomembranes: Lipids, Proteins and Receptors, R.M. Burton and L. Packer (eds.), N.A.T.O. Advanced Study Institute, Espinho, Portugal, pp. 12.1–12.18.

    Google Scholar 

  15. W. Lesslauer, J.E. Cain, and J.K. Blasie,Proc. Natl. Acad. Sci., U.S.A.,69 (1972) 1499–1503.

    Google Scholar 

  16. L. Letellier and E. Shechter,Eur. J. Biochem.,40 (1973) 507–512.

    Google Scholar 

  17. T. Gulik-Krzywichi, E. Schechter, M. Iwatsubo, J.L. Ranck, and V. Luzzatti,Biochim. Biophys. Acta,219 (1970) 1–10.

    Google Scholar 

  18. H. Traüble and E. Sackmann,J. Am. Chem. Soc.,94 (1972) 4499–4510.

    Google Scholar 

  19. L. Brand and J.R. Gohlke,Annu. Rev. Biochem.,41 (1972) 843–868.

    Google Scholar 

  20. M. Shinitzky, A.C. Dianoux, C. Gitler, and G. Weber,Biochemistry,10 (1971) 2106–2113.

    Google Scholar 

  21. T. Förster,Fluoreszenz organischer verbindung. Vandenhoeck and Ruprecht, Göttingen, Germany (1951) p. 85.

    Google Scholar 

  22. L. Stryer and R.P. Haugland,Proc. Natl. Acad. Sci., U.S.A.,58 (1967) 719–726.

    Google Scholar 

  23. J.R. Platt,J. Chem. Phys.,34 (1962) 862.

    Google Scholar 

  24. L.L. Grinius, A.A. Jasaitis, Yu.P. Kadziauskas, E.A. Liberman, V.P. Skulachev, V.P. Topali, L.M. Tsofina, and M.A. Vladimirova,Biochim. Biophys. Acta,216 (1970) 1–12.

    Google Scholar 

  25. S. Schuldiner and M. Avron,FEBS Lett. 14 (1971) 233–236.

    Google Scholar 

  26. J.S. Leigh,J. Chem. Phys.,52 (1970) 2608–2612.

    Google Scholar 

  27. K. Razi-Naqvi, J. Gonzalez-Rodriguez, R.J. Cherry, and D. Chapman,Nature New Biol. (London),245 (1973) 249–251.

    Google Scholar 

  28. J.S. Hyde and D.D. Thomas,Ann. N.Y. Acad. Sci.,222 (1973) 681–692.

    Google Scholar 

  29. S.J. Singer and G.L. Nicholson,Science,175 (1972) 720–725.

    Google Scholar 

  30. C. Gitler,Annu. Rev. Biophys. Bioeng.,1 (1972) 51–92.

    Google Scholar 

  31. B. Rudy and C. Gitler,Biochim. Biophys. Acta,288 (1972) 231–236.

    Google Scholar 

  32. J.M. Vanderkooi and J.B. Callis,Biochemistry,13 (1974) 4000–4006.

    Google Scholar 

  33. U. Cogan, M. Shinitzky, G. Weber, and T. Nishida,Biochemistry,12 (1973) 521–528.

    Google Scholar 

  34. G. Rouser, G.J. Nelson, S. Fleischer, and G. Simon, in: “Biological Membranes,” D. Chapman (ed.), Academic Press, New York and London, (1968) pp. 5–69.

    Google Scholar 

  35. H.M. Timberg, L. Packer, and A.D. Keith,Biochim. Biophys. Acta,283 (1972) 193–205.

    Google Scholar 

  36. J. Torres-Pereira, R. Mehlhorn, A.D. Keith, and L. Packer,Arch. Biochem. Biophys,160 (1974) 90–99.

    Google Scholar 

  37. J.R. Brocklehurst, R.B. Freedman, D.J. Hancock, and G.K. Radda,Biochem. J.,132 (1970) 385–396.

    Google Scholar 

  38. M.A. Williams, R.C. Stancliff, L. Packer, and A.D. Keith,Biochim. Biophys. Acta,267 (1972) 444–456.

    Google Scholar 

  39. J.K. Raison, J.M. Lyons, R.J. Mehlhorn, and A.D. Keith,J. Biol. Chem.,246 (1971) 4036–4040.

    Google Scholar 

  40. G. Lenaz, G. Parenti-Castelli, A.M. Sechi, E. Bertoli, and D.E. Griffiths, in:Membrane Proteins in Transport and Phosphorylation, G.F. Azzone, M.E. Klingenberg, E. Quagliariello, and N. Siliprandi (eds.), North-Holland Publishing Co., Amsterdam and London (1974) pp. 23–28.

    Google Scholar 

  41. J.K. Raison and E.J. McMurchie,Biochim. Biophys. Acta,363 (1974) 135–140.

    Google Scholar 

  42. W.B. McGlasson and J.K. Raison,Plant Physiol.,52 (1973) 390–392.

    Google Scholar 

  43. E. Oldfield, K.M. Keough, and D. Chapman,FEBS Lett.,20 (1972) 344–346.

    Google Scholar 

  44. A.G. Lee, M.J.M. Birdsall, J.C. Metcalfe, P.A. Toon, and G.B. Warren,Biochemistry,13 (1974) 3699–3705.

    Google Scholar 

  45. P. Jost, O.H. Griffith, R.A. Capaldi, and G. Vanderkooi,Proc. Natl. Acad. Sci., U.S.A.,70 (1973) 480–484.

    Google Scholar 

  46. P. Jost, O.H. Griffith, R.A. Capaldi, and G. Vanderkooi,Biochim. Biophys. Acta,311 (1973) 141–152.

    Google Scholar 

  47. A. Azzi, A.M. Tamburro, G. Farnia, and E. Gobbi,Biochim. Biophys. Acta,256 (1972) 619–624.

    Google Scholar 

  48. H.R. Drott, C.P. Lee, and T. Yonetani,J. Biol. Chem.,245 (1970) 5875–5879.

    Google Scholar 

  49. J. Vanderkooi and M. Erecinska,Arch. Biochem. Biophys.,162 (1974) 385–391.

    Google Scholar 

  50. D.A. Harris, J. Rosing, and E.C. Slater,FEBS Lett.,47 (1974) 236–240.

    Google Scholar 

  51. R.J. van de Stadt, K. van Dam, and E.C. Slater,Biochim. Biophys. Acta (1974) in press.

  52. H.S. Penefsky and A. Datta,Fed. Proc.,28 (1969) 2261.

    Google Scholar 

  53. C. Montecucco and A. Azzi,J. Biol. Chem,250 (1975) 5020–5025.

    Google Scholar 

  54. P. Duveaux, A. Bienvenuë, A.D. Brisson, G. Lauquin, P.M. Vignais, and P.T. Vignais,Biochemistry, N. Y. (1974) (in press).

  55. W.G. Hanstein and Y. Hatefi,J. Biol. Chem.,249 (1974) 1356–1362.

    Google Scholar 

  56. Y. Hatefi and W.G. Hanstein inMembrane Proteins in Transport and Phosphorylation, G.F. Azzone, M.E. Klingenberg, E. Quagliariello, and N. Siliprandi (eds.) North-Holland Publishing Co., Amsterdam and London (1974) pp. 187–200.

    Google Scholar 

  57. A. Azzi, B. Chance, G.K. Radda, and C.P. Lee,Proc. Natl. Acad. Sci. U.S.A.,62 (1969) 612–619.

    Google Scholar 

  58. B. Rubalcava, D. Martinaez de Munoz, and C. Giltler,Biochemistry,8 (1969) 2742–2747.

    Google Scholar 

  59. B. Chance, A. Azzi, L. Mela, G.K. Radda, and H. Vainio,FEBS Lett.,3 (1969) 10–13.

    Google Scholar 

  60. J.M. Wrigglesworth and L. Packer,Bioenergetics,1 (1970) 33–43.

    Google Scholar 

  61. D.H. Haynes and H. Staerk,J. Membr. Biol.,17 (1974) 313–340.

    Google Scholar 

  62. D.H. Haynes,J. Membr. Bio.,17 (1974) 341–366.

    Google Scholar 

  63. K. Nordenbrand and L. Ernster,Eur. J. Biochem.,18 (1971) 258–273.

    Google Scholar 

  64. G.K. Radda,Biochem. J.,132 (1971) 385–396.

    Google Scholar 

  65. A. Azzi, P.L. Gherardini, and M. Santato,J. Biol. Chem.,246 (1971) 2035–2042.

    Google Scholar 

  66. D.G. Layton, P. Symmons, and W.P. Williams,FEBS Lett.,41 (1974) 1–7.

    Google Scholar 

  67. A. Azzi and M. Santato inBiochemistry and Biophysics of Mitochondrial Membrane, G.F. Azzone, E. Carafoli, A.L. Lehninger, E. Quagliariello, and N. Siliprandi (eds.), Academic Press, New York and London (1972) pp. 361–376.

    Google Scholar 

  68. A. Azzi and M. Santato,Biochem. Biophys. Res. Commun,44 (1971) 211–217.

    Google Scholar 

  69. D. Layton, P. Symmons, and P. Williams,Biochem. Soc. Trans. London,1 (1973) 418–421.

    Google Scholar 

  70. C. Gitler, B. Rubalcava, and A. Caswell,Biochim. Biophys. Acta,193 (1969) 479–481.

    Google Scholar 

  71. B. Chance,Proc. Natl. Acad. Sci., U.S.A.,67 (1970) 560–571.

    Google Scholar 

  72. A. Azzi,Biochem. Biophys. Res. Commun.,37 (1969) 254–260.

    Google Scholar 

  73. B. Chance,FEBS Lett,23 (1972) 3–20.

    Google Scholar 

  74. C. Gitler in:Biomembranes, L.A. Manson (ed.), vol. 2, Plenum Press, New York and London (1971) pp. 41–73.

    Google Scholar 

  75. A.A. Jasaitis, V.V. Kuliene, and V.P. Skulachev,Biochim. Biophys. Acta,234 (1971) 177–181.

    Google Scholar 

  76. A.A. Jasaitis, L. van Chu, and V.P. Skulachev,FEBS Lett.,31 (1973) 241–245.

    Google Scholar 

  77. J.R. Brocklehurst, B.I.T. Cierkosz, and C.P. Lee,Biochim. Biophys. Acta,314 (1973) 136–148.

    Google Scholar 

  78. B. Chance,Fed. Proc.,32, (1973) 2569.

    Google Scholar 

  79. H.V. Davila, B.M. Salzberg, L.B. Cohen, and A.S. Waggoner,Nature New Biol (London),241 (1973) 159–160.

    Google Scholar 

  80. L.B. Cohen, B.M. Salzberg, H.V. Davila, W.N. Ross, D. Landowne, A.S. Waggoner, and C.H. Wang,J. Membr. Biol.,19 (1974) 1–36.

    Google Scholar 

  81. H. Bücher, J. Wiegand, B.B. Snavely, H.K. Beck, and H. Kuhn,Chem. Phys. Lett.,3 (1969) 508–511.

    Google Scholar 

  82. J.B. Jackson and A.R. Crofts,FEBS Lett.,4 (1969) 185–189.

    Google Scholar 

  83. H.T. Witt and A. Zickler,FEBS Lett.,37 (1973) 307–310.

    Google Scholar 

  84. H.T. Witt,Q. Rev. Biophys.,4 (1971) 365–477.

    Google Scholar 

  85. M. Baltscheffsky,Arch. Biochem. Biophys.,130 (1969) 646–652.

    Google Scholar 

  86. L. Packer and A.R. Crofts, in:Current Topics in Bioenergetics, D.R. Sanadi (eds.) vol. 2, Academic Press, New York and London, (1969) pp. 23–64.

    Google Scholar 

  87. R. Kraayenhof,FEBS Lett.,6 (1970) 161–165.

    Google Scholar 

  88. D.W. Deamer, R.C. Prince, and A.R. Crofts,Biochim. Biophys. Acta,274 (1972) 323–335.

    Google Scholar 

  89. S. Massari,Biochim. Biophys. Acta,375 (1974) 22–34.

    Google Scholar 

  90. R. Casadio, A. Baccarini-Melandri, and A.B. Melandri,Eur. J. Biochem.,47 (1974) 121–128.

    Google Scholar 

  91. J.W. Fiolet, E.P. Bakker, and K. van Dam.,Biochim. Biophys. Acta,368 (1974) 432–445.

    Google Scholar 

  92. P. Dell'Antone, R. Colonna, and G.F. Azzone,Eur. J. Biochem.,24 (1972) 553–576.

    Google Scholar 

  93. S. Massari, P. Dell'Antone, R. Colonna, and G.F. Azzone,Biochemistry,13 (1974) 1038–1043.

    Google Scholar 

  94. R. Colonna, S. Massari, and G.F. Azzone,Eur. J. Biochem.,34 (1973) 577–585.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Azzi, A., Montecucco, C. Probes for energy transduction in membranes. J Bioenerg Biomembr 8, 257–269 (1976). https://doi.org/10.1007/BF00761451

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00761451

Keywords

Navigation