Skip to main content
Log in

Two decades (1998–2018) of research Progress on Hormesis: advancing biological understanding and enabling novel applications

  • Comment
  • Published:
Journal of Cell Communication and Signaling Aims and scope

Abstract

This commentary briefly summarizes the extraordinary resurgence of hormesis within the biological, biomedical, toxicological and risk assessment domains over the past two decades. It places this resurgence within the context of challenging the scientific validity of the threshold and linear dose responses. It argues that conducting research on mechanisms that actuate and regulate the stimulatory response features of hormesis will provide the knowledge needed to develop potentially transformational applications aimed at protecting and enhancing biological resiliency as well as treating/curing a multitude of diverse medical conditions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1

References

  • Bernal AJ, Dolinoy DC, Huang D, Skaar DA, Weinhouse C, Jirtle RL (2013) Adaptive radiation-induced epigenetic alterations mitigated by antioxidants. FASEB J 27:665–671

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Calabrese EJ (2008) Hormesis: why it is important to toxicology and toxicologists. Environ Toxicol Chem 27:1451–1474

    Article  CAS  PubMed  Google Scholar 

  • Calabrese EJ (2015) On the origins of the linear no-threshold (LNT) dogma by means of untruths, artful dodges and blind faith. Environ Res 142:432–442

    Article  CAS  PubMed  Google Scholar 

  • Calabrese EJ (2016a) Preconditioning is hormesis part I: documentation, dose-response features and mechanistic foundations. Pharmacol Res 110:242–264

    Article  PubMed  Google Scholar 

  • Calabrese EJ (2016b) Preconditioning is hormesis part II: how the conditioning dose mediates protection: dose optimization within temporal and mechanistic frameworks. Pharmacol Res 110:265–275

    Article  CAS  PubMed  Google Scholar 

  • Calabrese EJ (2017) Flaws in the LNT single-hit model for cancer risk: an historical assessment. Environ Res 158:773–788

    Article  CAS  PubMed  Google Scholar 

  • Calabrese EJ (2018) From Muller to mechanism: how LNT became the default model for cancer risk assessment. Environ Pollut 241:289–302

    Article  CAS  PubMed  Google Scholar 

  • Calabrese EJ, Agathokleous E (2018) Building biological shields via Hormeis. Trends Pharmacol Sci 40(1):8–10

    Article  CAS  PubMed  Google Scholar 

  • Calabrese EJ, Baldwin LA (1997) A quantitatively-based methodology for the evaluation of chemical hormesis. Hum Ecol Risk Assess 3:545–554

    Article  Google Scholar 

  • Calabrese EJ, Baldwin LA (2001a) The frequency of U-shaped dose responses in the toxicological literature. Toxicol Sci 62:330–338

    Article  CAS  PubMed  Google Scholar 

  • Calabrese EJ, Baldwin LA (2001b) Hormesis: U-shaped dose responses and their centrality in toxicology. Trends Pharmacol Sci 22:285–291

    Article  CAS  PubMed  Google Scholar 

  • Calabrese EJ, Baldwin LA (2003a) Hormesis: the dose-response revolution. Annu Rev Pharmacol Toxicol 43:175–197

    Article  CAS  PubMed  Google Scholar 

  • Calabrese EJ, Baldwin LA (2003b) The hormetic dose-response model is more common than the threshold model in toxicology. Toxicol Sci 71:246–250

    Article  CAS  PubMed  Google Scholar 

  • Calabrese EJ, Blain RB (2011) The hormesis database: the occurrence of hormetic dose responses in the toxicological literature. Regul Toxicol Pharmacol 61:73–81

    Article  CAS  PubMed  Google Scholar 

  • Calabrese EJ, Baldwin LA, Holland CD (1999) Hormesis: a highly generalizable and reproducible phenomenon with important implications for risk assessment. Risk Anal 19:261–281

    CAS  PubMed  Google Scholar 

  • Calabrese EJ, Staudenmayer JW, Stanek EJ, Hoffmann GR (2006) Hormesis outperforms threshold model in National Cancer Institute antitumor drug screening database. Toxicol Sci 94:368–378

    Article  CAS  PubMed  Google Scholar 

  • Calabrese EJ, Agathokleous E, Kozumbo WJ, Stanek EJ 3rd, Leonard D (2019) Estimating the range of the maximum hormetic stimulatory response. Environ Res 170:337–343

    Article  CAS  PubMed  Google Scholar 

  • Crocetti S, Beyer C, Schade G, Egli M, Frohlich J, Franco-Obrego A (2013) Low intensity and frequency pulsed electromagnetic fields selectively impair breast Cancer cell viability. PLoS One 8(9):e72944. https://doi.org/10.1371/journal.pone.0072944

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Huang YY, Sharma SK, Carroll J, Hamblin MR (2011) Biphasic dose response in low level light therapy - an update. Dose-Response 9:602–618

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Leak RK, Calabrese EJ, Kozumbo WJ, Gidday JM, Johnson TJ, Mitchell JR, Ozaki CK, Wetzker R, Bast A, Belz RG, Bøtker HE, Koch S, Mattson MP, Simon RP, Jirtle RL, Melvin E, Andersen ME (2018) Enhancing and extending biological performance and resilience. Dose-Response 16(3). https://doi.org/10.1177/1559325818784501

  • Nascarella MA, Stanek EJ III, Hoffmann GR, Calabrese EJ (2009) Quantification of hormesis in anticancer-agent dose responses. Dose-Response 7:160–171

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Pilla A, Fitzsimmons R, Muehsam D, Wu J, Rohde C, Casper D (2011) Electromagnetic fields as first messenger in biological signaling: application to calmodulin-dependent signaling in tissue repair. Biochim Biophys Acta 1810:1236–1245

    Article  CAS  PubMed  Google Scholar 

  • Salehpour F, Mahmoudi J, Kamari F, Sadigh-Eteghad S, Rasta SH, Hamblin MR (2018) Brain Photobiomodulation therapy: a narrative review. Mol Neurobiol 55:6601–6636

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sannino A, Zeni O, Romeo S, Massa R, Gialanella G, Grossi G, Manti L, Vijayalaxmi, Scarfi MR (2014) Adaptive response in human blood lymphocytes exposed to non-ionizing radiofrequency fields: resistance to ionizing radiation-induced damage. J Radiat Res 55:210–217

    Article  CAS  PubMed  Google Scholar 

  • Sun C, Wei XX, Fei Y, Su LL, Zhao XY, Chen GD, Xu ZP (2016) Mobile phone signal exposure triggers a hormesis-like effect in Atm(+/+) and Atm(−/−) mouse embryonic fibroblasts. Sci Rep 6

Download references

Acknowledgements

EJC acknowledges longtime support from the US Air Force (AFOSR FA9550-13-1-0047) and ExxonMobil Foundation (S18200000000256). The views and conclusions contained herein are those of the author and should not be interpreted as necessarily representing policies or endorsement, either expressed or implied. Sponsors had no involvement in study design, collection, analysis, interpretation, writing and decision to and where to submit for publication consideration.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Edward J. Calabrese.

Ethics declarations

Conflict of interests

None.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kozumbo, W.J., Calabrese, E.J. Two decades (1998–2018) of research Progress on Hormesis: advancing biological understanding and enabling novel applications. J. Cell Commun. Signal. 13, 273–275 (2019). https://doi.org/10.1007/s12079-019-00517-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12079-019-00517-7

Keywords

Navigation