Skip to content
Licensed Unlicensed Requires Authentication Published by De Gruyter September 20, 2019

Reconstituting neurovascular unit based on the close relations between neural stem cells and endothelial cells: an effective method to explore neurogenesis and angiogenesis

  • Wang Hongjin , Chen Han , Jiang Baoxiang , Yu Shiqi and Xu Xiaoyu EMAIL logo

Abstract

The discovery of neural stem cells (NSCs) and their microenvironment, the NSC niche, brought new therapeutic strategies through neurogenesis and angiogenesis for stroke and most neurodegenerative diseases, including Alzheimer’s disease. Based on the close links between NSCs and endothelial cells, the integration of neurogenesis and angiogenesis of the NSC niche is also a promising area to the neurovascular unit (NVU) modeling and is now offering a powerful tool to advance our understanding of the brain. In this review, critical aspects of the NVU and model systems are discussed. First, we briefly describe the interaction of each part in the NSC niche. Second, we introduce the co-culture system, microfluidic platforms, and stem cell-derived 3D reconstitution used in NVU modeling based on the close relations between NSCs and endothelial cells, and various characteristics of cell interactions in these systems are also described. Finally, we address the challenges in modeling the NVU that can potentially be overcome by employing strategies for advanced biomaterials and stem cell co-culture use. Based on these approaches, researchers will continue to develop predictable technologies to control the fate of stem cells, achieve accurate screening of drugs for the nervous system, and advance the clinical application of NVU models.

Award Identifier / Grant number: CYS18098

Award Identifier / Grant number: 81473549

Award Identifier / Grant number: 81773984

Funding statement: This work was supported by the Chongqing postgraduate research innovation project (CYS18098) and The National Natural Science Foundation of China (Nos. 81473549, 81773984). The funders had no role in data collection and analysis, decision to publish, or preparation of the manuscript.

References

Abbott, N., Ronnback, L., and Hansson, E. (2006). Astrocyte-endothelial interactions at the blood-brain barrier. Nat. Rev. Neurosci. 7, 41–53.10.1038/nrn1824Search in Google Scholar

Achyuta, A.K.H., Conway, A.J., Crouse, R.B., Bannister, E.C., Lee, R.N., and Katnik, C.P. (2013). A modular approach to create a neurovascular unit-on-a-chip. Lab. Chip. 13, 542–553.10.1039/C2LC41033HSearch in Google Scholar

Adriani, G., Ma, D.L., Pavesi, A., Kamm, R., and Goh, E.L.K. (2017). A 3D neurovascular microfuidic model consisting of neurons, astrocytes and cerebral endothelial cells as blood-brain barrier. Lab Chip 17, 448–459.10.1039/C6LC00638HSearch in Google Scholar

Akanuma, S., Hori, S., Ohtsuki, S., Fujiyoshi, M., and Terasaki, T. (2008). Expression of nuclear receptor mRNA and liver X receptor-mediated regulation of ABC transporter A1 at rat blood-brain barrier. Neurochem. Int. 52, 669–674.10.1016/j.neuint.2007.08.012Search in Google Scholar

Alvarez-Buylla, A. and Lim, D.A. (2004). For the long run: maintaining germinal niches in the adult brain. Neuron 41, 683–686.10.1016/S0896-6273(04)00111-4Search in Google Scholar

Arvidsson, A., Collin, T., Kirik, D., Kokaia, Z., and Lindvall, O. (2002). Neuronal replacement from endogenous precursors in the adult brain after stroke. Nat. Med. 8, 963–970.10.1038/nm747Search in Google Scholar PubMed

Ashton, R.S., Keung, A.J., Peltier, J., and Schaffer, D.V. (2011). Progress and prospects for stem cell engineering. Annu. Rev. Chem. Biomol. Eng. 2, 479–502.10.1146/annurev-chembioeng-061010-114105Search in Google Scholar PubMed PubMed Central

Banerjee, J., Shi, Y., and Azevedo, H.S. (2016). In vitro blood–brain barrier models for drug research: state-of-the-art and new perspectives on reconstituting these models on artificial basement membrane platforms. Drug Discov. Today 21, 1367–1386.10.1016/j.drudis.2016.05.020Search in Google Scholar PubMed

Bang, S., Lee, S.R., Ko, J., Son, K., Tahk, D., and Ahn, J. (2017). A low permeability microfluidic blood-brain barrier platform with direct contact between perfusable vascular network and astrocytes. Sci. Rep. 7, 8083.10.1038/s41598-017-07416-0Search in Google Scholar PubMed PubMed Central

Barbosa, J.S., Sanchez-Gonzalez, R., Di, G.R., Baumgart, E.V., Theis, F.J., and Götz, M. (2015). Live imaging of adult neural stem cell behavior in the intact and injured zebrafish brain. Science 348, 789–793.10.1126/science.aaa2729Search in Google Scholar PubMed

Barcelona, P.F. and Saragovi, H.U. (2015). A pro-nerve growth factor (proNGF) and NGF binding protein, α2-macroglobulin, differentially regulates p75 and trka receptors and is relevant to neurodegeneration ex vivo and in vivo. Mol. Cell. Biol. 35, 3396–3408.10.1128/MCB.00544-15Search in Google Scholar PubMed PubMed Central

Benton, G., Kleinman, H.K., Arnaoutova, I.P., and George, J. (2009). Advancing science and technology via 3D culture on basement membrane matrix. J. Cell. Physiol. 221, 18–25.10.1002/jcp.21832Search in Google Scholar PubMed

Bernas, M.J., Cardoso, F.L., Daley, S.K., Weinand, M.E., Campos, A.R., Ferreira, A.J., Hoying, J.B., Witte, M.H., Brites, D., Persidsky, Y., et al. (2010). Establishment of primary cultures of human brain microvascular endothelial cells to provide an in vitro cellular model of the blood-brain barrier. Nat. Protoc. 5, 1265–1272.10.1038/nprot.2010.76Search in Google Scholar PubMed PubMed Central

Bond, A.M., Ming, G.L., and Song, H. (2015). Adult mammalian neural stem cells and neurogenesis: five decades later. Cell Stem Cell 17, 385–395.10.1016/j.stem.2015.09.003Search in Google Scholar PubMed PubMed Central

Booth, R. and Kim, H. (2012). Characterization of a microfluidic in vitro model of the blood-brain barrier (μBBB). Lab Chip 12, 1784–1792.10.1039/c2lc40094dSearch in Google Scholar PubMed

Bosworth, A.M., Faley, S.L., Bellan, L.M., and Lippmann, E.S. (2017). Modeling neurovascular disorders and therapeutic outcomes with human-induced pluripotent stem cells. Front. Bioeng. Biotechnol. 5, 87.10.3389/fbioe.2017.00087Search in Google Scholar PubMed PubMed Central

Boutin, M.E., Kramer, L.L., Livi, L.L., Brown, T., Moore, C., and Hoffman-Kim, D. (2018). A three-dimensional neural spheroid model for capillary-like network formation. J. Neurosci. Methods 299, 55–63.10.1016/j.jneumeth.2017.01.014Search in Google Scholar PubMed

Brown, J.A., Pensabene, V., Markov, D.A., Allwardt, V., Neely, M.D., and Shi, M. (2015). Recreating blood-brain barrier physiology and structure on chip: a novel neurovascular microfuidic bioreactor. Biomicrofuidics 9, 054124.10.1063/1.4934713Search in Google Scholar PubMed PubMed Central

Casper, D., Engstrom, S.J., and Mirchandani, G.R. (2002). Enhanced vascularization and survival of neural transplants with ex vivo angiogenic gene transfer. Cell Transplant. 11, 331.10.3727/000000002783985828Search in Google Scholar

Chiu, D.T., Jeon, N.L., Huang, S., Kane, R.S., Wargo, C.J., and Choi, I.S. (2000). Patterned deposition of cells and proteins onto surfaces by using three-dimensional microfluidic systems. Proc. Natl. Acad. Sci. USA 97, 2408–2413.10.1073/pnas.040562297Search in Google Scholar PubMed PubMed Central

Chou, C.H., Sinden, J.D., Couraud, P.O., and Modo, M. (2014). In vitro modeling of the neurovascular environment by coculturing adult human brain endothelial cells with human neural stem cells. PLoS One 9, e106346.10.1371/journal.pone.0106346Search in Google Scholar PubMed PubMed Central

Chou, C.H., Fan, H.C., and Hueng, D.Y. (2015). Potential of neural stem cell-based therapy for Parkinson’s disease. Parkinsons Dis. 1, 571475.10.1155/2015/571475Search in Google Scholar PubMed PubMed Central

Ciccolini, F. and Svendsen, C.N. (1998). Fibroblast growth factor 2 (FGF-2) promotes acquisition of epidermal growth factor (EGF) responsiveness in mouse striatal precursor cells: identification of neural precursors responding to both EGF and FGF-2. J. Neurosci. 18, 7869–7880.10.1523/JNEUROSCI.18-19-07869.1998Search in Google Scholar

Conti, L. and Cattaneo, E. (2010). Neural stem cell systems: physiological players or in vitro entities? Nat. Rev. Neurosci. 11, 176–187.10.1038/nrn2761Search in Google Scholar PubMed

Cosson, S., Otte, E.A., Hezaveh, H., and Cooper-White, J.J. (2015). Concise Review: tailoring bioengineered scaffolds for stem cell applications in tissue engineering and regenerative medicine. Stem Cell Transl. Med. 4, 156–164.10.5966/sctm.2014-0203Search in Google Scholar PubMed PubMed Central

Da Fonseca, A.C.C., Matias, D., Garcia, C., Amaral, R., Geraldo, L.H., and Freitas, C. (2014). The impact of microglial activation on blood-brain barrier in brain diseases. Front. Cell. Neurosci. 8, 36210.3389/fncel.2014.00362Search in Google Scholar PubMed PubMed Central

De Waele, J., Reekmans, K., Daans, J., Goossens, H., Berneman, Z., and Ponsaerts, P. (2015). 3D culture of murine neural stem cells on decellularized mouse brain sections. Biomaterials 41, 122–131.10.1016/j.biomaterials.2014.11.025Search in Google Scholar PubMed

Del Zoppo, G.J. and Milner, R. (2006). Integrin-matrix interactions in the cerebral microvasculature. Arterioscl. Throm. Vas. 26, 1966–1975.10.1161/01.ATV.0000232525.65682.a2Search in Google Scholar PubMed

Delgado, A., Ferrón, S.R., Vicente, D., Porlan, E., Perez-Villalba, A., and Trujillo, C. (2014). Endothelial NT-3 delivered by vasculature and CSF promotes quiescence of subependymal neural stem cells through nitric oxide induction. Neuron 83, 572–585.10.1016/j.neuron.2014.06.015Search in Google Scholar PubMed

Deng, Z., Liu, Z., Wei, T., Wang, Y., and Lou, Y. (2008). Mesenchymal stem cells regulate maintenance of neural stem cells through VEGFR2 and Notch signaling pathways. Cell Res. 18, 691–708.10.1038/cr.2008.149Search in Google Scholar

Doetsch, F. (2003). A niche for adult neural stem cells. Curr. Opin. Genet. Dev. 13, 543–550.10.1016/j.gde.2003.08.012Search in Google Scholar

Doetsch, F., Petreanu, L., Caille, I., Garcia-Verdugo, J.M., and Alvarez-Buylla, A. (2002). EGF converts transit-amplifying neurogenic precursors in the adult brain into multipotent stem cells. Neuron 36, 1021–1034.10.1016/S0896-6273(02)01133-9Search in Google Scholar

Edmondson, R., Broglie, J.J., Adcock, A.F., and Yang, L. (2014). Three-dimensional cell culture systems and their applications in drug discovery and cell-based biosensors. Assay Drug Dev. Technol. 12, 207–218.10.1089/adt.2014.573Search in Google Scholar

Ehret, F., Vogler, S., and Kempermann, G. (2015). A co-culture model of the hippocampal neurogenic niche reveals differential effects of astrocytes, endothelial cells and pericytes on proliferation and differentiation of adult murine precursor cells. Stem Cell Res. 15, 514–521.10.1016/j.scr.2015.09.010Search in Google Scholar

Engelhardt, B. (2003). Development of the blood-brain barrier. Cell Tissue Res. 20, 119–129.10.1007/978-1-4899-1054-7_2Search in Google Scholar

Ezzati, A., Wang, C., Lipton, R.B., Altschul, D., Katz, M.J., and Dickson, D.W. (2017). Association between vascular pathology and rate of cognitive decline independent of Alzheimer’s disease pathology. J. Am. Geriatr. Soc. 65, 1836–1841.10.1111/jgs.14903Search in Google Scholar

Ford, M.C., Bertram, J.P., Hynes, S.R., Michaud, M., Li, Q., and Young, M. (2006). A macroporous hydrogel for the coculture of neural progenitor and endothelial cells to form functional vascular networks in vivo. Proc. Natl. Acad. Sci. USA 103, 2512–2517.10.1073/pnas.0506020102Search in Google Scholar

Frantz, C., Stewart, K.M., and Weaver, V.M. (2010). The extracellular matrix at a glance. J. Cell Sci. 123, 4195–4200.10.1242/jcs.023820Search in Google Scholar

Freedman, B.R., Bade, N.D., Riggin, C.N., Zhang, S., Haines, P.G., and Ong, K.L. (2015). The (dys)functional extracellular matrix. BBA-Mol. Cell Res. 1853, 3153–3164.10.1016/j.bbamcr.2015.04.015Search in Google Scholar

Fuchs, E., Tumbar, T., and Guasch, G. (2004). Socializing with the neighbors: stem cells and their niche. Cell 116, 769–778.10.1016/S0092-8674(04)00255-7Search in Google Scholar

Fuentealba, L.C., Obernier, K., and Alvarez-Buylla, A. (2012). Adult neural stem cells bridge their niche. Cell Stem Cell 10, 698–708.10.1016/j.stem.2012.05.012Search in Google Scholar PubMed PubMed Central

Goldberg, J.S. and Hirschi, K.K. (2009). Diverse roles of the vasculature within the neural stem cell niche. Regen. Med. 4, 879–897.10.2217/rme.09.61Search in Google Scholar PubMed PubMed Central

Gómez-Gaviro, M.V., Lovell-Badge, R., Fernández-Avilés, F., and Lara-Pezzi, E. (2012). The vascular stem cell niche. J. Cardiovasc. Transl. 5, 618–630.10.1007/s12265-012-9371-xSearch in Google Scholar PubMed

Gritti, A., Parati, E.A., Cova, L., Frolichsthal, P., Galli, R., and Wanke, E. (1996). Multipotential stem cells from the adult mouse brain proliferate and self-renew in response to basic fibroblast growth factor. J. Neurosci. 16, 1091–1100.10.1523/JNEUROSCI.16-03-01091.1996Search in Google Scholar

Guo, Y., Shi, D., Li, W., Liang, C., Wang, H., and Ye, Z. (2008). Proliferation and neurogenesis of neural stem cells enhanced by cerebral microvascular endothelial cells. Microsurgery 28, 54–60.10.1002/micr.20443Search in Google Scholar PubMed

Han, J., Calvo, C.F., Kang, T.H., Baker, K., Park, J.H., and Parras, C. (2015). Vascular endothelial growth factor receptor 3 controls neural stem cell activation in mice and humans. Cell Rep. 10, 1158–1172.10.1016/j.celrep.2015.01.049Search in Google Scholar PubMed PubMed Central

Hatherell, K., Couraud, P.O., and Romero, I.A. (2011). Development of a three-dimensional, all-human in vitro model of the blood–brain barrier using mono-, co-, and tri-cultivation Transwell models. J. Neurosci. Methods 199, 223–229.10.1016/j.jneumeth.2011.05.012Search in Google Scholar PubMed

Helms, H.C., Abbott, N.J., Burek, M., Cecchelli, R., Couraud, P.O., and Deli, M.A. (2016). In vitro models of the blood-brain barrier: an overview of commonly used brain endothelial cell culture models and guidelines for their use. J. Cereb. Blood Flow Metab. 36, 862–890.10.1177/0271678X16630991Search in Google Scholar PubMed PubMed Central

Hopkins, A.M., Desimone, E., Chwalek, K., and Kaplan, D.L. (2015). 3D in vitro modeling of the central nervous system. Prog. Neurobiol. 125, 1–25.10.1016/j.pneurobio.2014.11.003Search in Google Scholar PubMed PubMed Central

Hsueh, Y.Y., Chang, Y.J., and Huang, C.W. (2016). Corrigendum synergy of endothelial and neural progenitor cells from adipose-derived stem cells to preserve neurovascular structures in rat hypoxic-ischemic brain injury. Sci. Rep. 6, 31255.10.1038/srep31255Search in Google Scholar PubMed PubMed Central

Jackson, E.L., Garcia-Verdugo, J.M., Gil-Perotin, S., Roy, M., and Alvarez-Buylla, A. (2006). PDGFRα-Positive B cells are neural stem cells in the adult svz that form glioma-like growths in response to increased PDGF signaling. Neuron 51, 187–199.10.1016/j.neuron.2006.06.012Search in Google Scholar PubMed

Jin, K., Zhu, Y., Sun, Y., Mao, X.O., Xie, L., and Greenberg, D.A. (2002). Vascular endothelial growth factor (VEGF) stimulates neurogenesis in vitro and in vivo. Proc. Natl. Acad. Sci USA 99, 11946–11950.10.1073/pnas.182296499Search in Google Scholar PubMed PubMed Central

Jones, D.L. and Wagers, A.J. (2008). No place like home: anatomy and function of the stem cell niche. Nat. Rev. Mol. Cell Biol. 9, 11–21.10.1038/nrm2319Search in Google Scholar PubMed

Katsimpardi, L., Litterman, N.K., Schein, P.A., Miller, C.M., Loffredo, F.S., and Wojtkiewicz, G.R. (2014). Vascular and neurogenic rejuvenation of the aging mouse brain by young systemic factors. Science 344, 630.10.1126/science.1251141Search in Google Scholar PubMed PubMed Central

Kerever, A., Schnack, J., Vellinga, D., Ichikawa, N., Moon, C., and Arikawa-Hirasawa, E. (2007). Novel extracellular matrix structures in the neural stem cell niche capture the neurogenic factor fibroblast growth factor 2 from the extracellular milieu. Stem Cells (Miamisburg) 25, 2146–2157.10.1634/stemcells.2007-0082Search in Google Scholar PubMed

Kornblum, H.I. (2007). Introduction to neural stem cells. Stroke 38, 810–816.10.1161/01.STR.0000255757.12198.0fSearch in Google Scholar PubMed

Kuo, Y.C. and Lu, C.H. (2011). Effect of human astrocytes on the characteristics of human brain-microvascular endothelial cells in the blood-brain barrier. Colloid Surf. B 86, 225–231.10.1016/j.colsurfb.2011.04.005Search in Google Scholar PubMed

Lancaster, M.A., Hurles, M.E., Martin, C.-A., Wenzel, D., and Knoblich, J.A. (2013). Cerebral organoids model human brain development and microcephaly. Nature 501, 373–379.10.1038/nature12517Search in Google Scholar PubMed PubMed Central

Lauschke, K., Frederiksen, L., and Hall, V.J. (2017). Paving the way towards complex blood-brain barrier models using pluripotent stem cells. Stem Cells Dev. 26, 857–874.10.1089/scd.2017.0003Search in Google Scholar PubMed

Leventhal, C., Rafii, S., Rafii, D., Shahar, A., and Goldman, S.A. (1999). Endothelial trophic support of neuronal production and recruitment from the adult mammalian subependyma. Mol. Cell Neurosc. 13, 450–464.10.1006/mcne.1999.0762Search in Google Scholar PubMed

Li, L. and Xie, T. (2005). Stem cell niche: structure and function. Annu. Rev. Cell Dev. Biol. 17, 605–631.10.1146/annurev.cellbio.21.012704.131525Search in Google Scholar

Li, Q., Ford, M.C., Lavik, E.B., and Madri, J.A. (2010). Modeling the neurovascular niche: VEGF- and BDNF-mediated cross-talk between neural stem cells and endothelial cells: an in vitro study. J. Neurosci. Res. 84, 1656–166810.1002/jnr.21087Search in Google Scholar

Li, Y., Xu, C., and Ma, T. (2014). In vitro organogenesis from pluripotent stem cells. Organogenesis 10, 159–163.10.4161/org.28918Search in Google Scholar

Li, Y., Chang, S., Li, W., Tang, G., Ma, Y., and Liu, Y. (2018). cxcl12-engineered endothelial progenitor cells enhance neurogenesis and angiogenesis after ischemic brain injury in mice. Stem Cell Res. Ther. 9, 139.10.1186/s13287-018-0865-6Search in Google Scholar

Licht, T. and Keshet, E. (2015). The vascular niche in adult neurogenesis. Mech. Dev. 138, 56–62.10.1016/j.mod.2015.06.001Search in Google Scholar

Lledo, P.M. and Valley, M. (2016). Adult olfactory bulb neurogenesis. Csh. Perspect. Biol. 8, 1–12.10.1101/cshperspect.a018945Search in Google Scholar

Louis, S.A., Mak, C.K.H., and Reynolds, B.A. (2013). Methods to culture, differentiate, and characterize neural stem cells from the adult and embryonic mouse central nervous system. Methods Mol. Biol. 946, 479–506.10.1007/978-1-62703-128-8_30Search in Google Scholar

Louissaint, A., Rao, S., Leventhal, C., and Goldman, S.A. (2002). Coordinated interaction of neurogenesis and angiogenesis in the adult songbird brain. Neuron 34, 945–960.10.1016/S0896-6273(02)00722-5Search in Google Scholar

Mabie, P.C., Mehler, M.F., and Kessler, J.A. (1999). Multiple roles of bone morphogenetic protein signaling in the regulation of cortical cell number and phenotype. J. Neurosci. 19, 7077–7088.10.1523/JNEUROSCI.19-16-07077.1999Search in Google Scholar

Martínez-Morales, P.L., Revilla, A., and Oca, A.I. (2013). Progress in stem cell therapy for major human neurological disorders. Stem Cell Rev. 9, 685–699.10.1007/s12015-013-9443-6Search in Google Scholar PubMed

Mathieu, C., Fouchet, P., and Gauthier, L.R. (2006). Coculture with endothelial cells reduces the population of cycling LeX neural precursors but increases that of quiescent cells with a side population phenotype. Exp. Cell Res. 312, 707–718.10.1016/j.yexcr.2005.11.018Search in Google Scholar PubMed

Maurer, M.H., Thomas, C., Bürgers, H.F., and Kuschinsky, W. (2008). Transplantation of adult neural progenitor cells transfected with vascular endothelial growth factor rescues grafted cells in the rat brain. Int. J. Biol. Sci. 4, 1–7.10.7150/ijbs.4.1Search in Google Scholar PubMed PubMed Central

McConnell, H.L., Kersch, C.N., Woltjer, R.L., and Neuwelt, E.A. (2017). The translational significance of the neurovascular unit: a mini-review. J. Biol. Chem. 292, 762–770.10.1074/jbc.R116.760215Search in Google Scholar PubMed PubMed Central

Menn, B., Garcia-Verdugo, J.M., Yaschine, C., and Alvarez, A. (2006). Origin of oligodendrocytes in the subventricular zone of the adult brain. J. Neurosci. 26, 7907–7918.10.1523/JNEUROSCI.1299-06.2006Search in Google Scholar PubMed PubMed Central

Mercier, F., Kitasako, J.T., and Hatton, G.I. (2010). Anatomy of the brain neurogenic zones revisited: fractones and the fibroblast/macrophage network. J. Comp. Neurol. 451, 170–188.10.1002/cne.10342Search in Google Scholar PubMed

Milner, R. (2007). A novel three-dimensional system to study interactions between endothelial cells and neural cells of the developing central nervous system. BMC Neurosci. 8, 3.10.1186/1471-2202-8-3Search in Google Scholar PubMed PubMed Central

Mirzadeh, Z., Merkle, F.T., Soriano-Navarro, M., Garcia-Verdugo, J.M., and Alvarez-Buylla, A. (2008). Neural stem cells confer unique pinwheel architecture to the ventricular surface in neurogenic regions of the adult brain. Cell Stem Cell 3, 265–278.10.1016/j.stem.2008.07.004Search in Google Scholar PubMed PubMed Central

Morrison, S.J. and Spradling, A.C. (2008). Stem cells and niches: mechanisms that promote stem cell maintenance throughout life. Cell 132, 598–611.10.1016/j.cell.2008.01.038Search in Google Scholar PubMed PubMed Central

Naik, P. and Cucullo, L. (2012). In vitro blood–brain barrier models: current and perspective technologies. J. Pharm. Sci. 101, 1337–1354.10.1002/jps.23022Search in Google Scholar PubMed PubMed Central

Nakagomi, N., Nakagomi, T., Kubo, S., Nakano-Doi, A., Saino, O., Takata, M., Yoshikawa, H., Stern, D.M., Matsuyama, T., and Taguchi, A. (2010). Endothelial cells support survival, proliferation, and neuronal differentiation of transplanted adult ischemia-induced neural stem/progenitor cells after cerebral infarction. Stem Cells 27, 2185–2195.10.1002/stem.161Search in Google Scholar PubMed

Nelson, A.R., Sweeney, M.D., Sagare, A.P., and Zlokovic, B.V. (2016). Neurovascular dysfunction and neurodegeneration in dementia and Alzheimer’s disease. Biochim. Biophys. Acta 1862, 887–900.10.1016/j.bbadis.2015.12.016Search in Google Scholar

Neuwelt, E., Abbott, N.J., and Abrey, L. (2008). Strategies to advance translational research into brain barriers. Lancet Neurol. 7, 84–96.10.1016/S1474-4422(07)70326-5Search in Google Scholar

Osipova, E.D., Komleva, Y.K., Morgun, A.V., Lopatina, O.L., Panina, Y.A., and Ya, O.R. (2018). Designing in vitro blood-brain barrier models reproducing alterations in brain aging. Front. Aging Neurosci. 10, 234.10.3389/fnagi.2018.00234Search in Google Scholar

Palmer, T. (1997). The adult rat hippocampus contains primordial neural stem cells. Mol. Cell Neurosci. 8, 389–404.10.1006/mcne.1996.0595Search in Google Scholar

Palmer, T.D., Willhoite, A.R., and Gage, F.H. (2000). Vascular niche for adult hippocampal neurogenesis. J. Comp. Neurol. 425, 479–494.10.1002/1096-9861(20001002)425:4<479::AID-CNE2>3.0.CO;2-3Search in Google Scholar

Pardridge, W.M. (2002). Drug and gene delivery to the brain: the vascular route. Neuron 36, 555–558.10.1016/S0896-6273(02)01054-1Search in Google Scholar

Pardridge, W.M., Triguero, D., Yang, J., and Cancilla, P.A. (1990). Comparison of in vitro and in vivo models of drug transcytosis through the blood-brain barrier. J. Pharmacol. Exp. Ther. 253, 884–891.Search in Google Scholar

Paschos, N.K., Brown, W.E., Eswaramoorthy, R., Hu, J.C., and Athanasiou, K.A. (2015). Advances in tissue engineering through stem cell-based co-culture. J. Tissue Eng. Regen. Med. 9, 488–503.10.1002/term.1870Search in Google Scholar

Persidsky, Y., Ramirez, S.H., Haorah, J., and Kanmogne, G.D. (2006). Blood–brain barrier: structural components and function under physiologic and pathologic conditions. J. Neuroimmune Pharm. 1, 223–236.10.1007/s11481-006-9025-3Search in Google Scholar

Pineda, J.R., Boussin, F.D., and Mouthon, M.A. (2013a). TGFβ, a troublemaker in the adult neural stem cell niche. Med. Sci. 29, 572–574.10.1051/medsci/2013296006Search in Google Scholar

Pineda, J.R., Daynac, M., Chicheportiche, A., Cebrian-Silla, A., Felice, K.S., and Garcia-Verdugo, J.M. (2013b). Vascular-derived TGF-β increases in the stem cell niche and perturbs neurogenesis during aging and following irradiation in the adult mouse brain. EMBO Mol. Med. 5, 548–562.10.1002/emmm.201202197Search in Google Scholar

Plane, J.M., Andjelkovic, A.V., and Keep, R.F. (2010). Intact and injured endothelial cells differentially modulate postnatal murine forebrain neural stem cells. Neurobiol. Dis. 37, 218–227.10.1016/j.nbd.2009.10.008Search in Google Scholar

Potjewyd, G., Moxon, S., Wang, T., Domingos, M., and Hooper, N.M. (2018). Tissue engineering 3D neurovascular units: a biomaterials and bioprinting perspective. Trends Biotechnol. 36, 457.10.1016/j.tibtech.2018.01.003Search in Google Scholar

Rauch, U. (2004). Extracellular matrix components associated with remodeling processes in brain. Cell Mol. Life Sci. 61, 2031–2045.10.1007/s00018-004-4043-xSearch in Google Scholar

Rauch, M.F., Hynes, S.R., Bertram, J., Redmond, A., Robinson, R., Williams, C., and Lavik, E.B. (2009). Engineering angiogenesis following spinal cord injury: a coculture of neural progenitor and endothelial cells in a degradable polymer implant leads to an increase in vessel density and formation of the blood-spinal cord barrier. Eur. J. Neurosci. 29, 132–145.10.1111/j.1460-9568.2008.06567.xSearch in Google Scholar

Reznikov, K., Acklin, S.E., and Kooy, D.V.D. (1997). Clonal heterogeneity in the early embryonic rodent cortical germinal zone and the separation of subventricular from ventricular zone lineages. Dev. Dynam. 210, 328–343.10.1002/(SICI)1097-0177(199711)210:3<328::AID-AJA12>3.0.CO;2-6Search in Google Scholar

Riquelme, P.A., Drapeau, E., and Doetsch, F. (2008). Brain micro-ecologies: neural stem cell niches in the adult mammalian brain. Philos. T. R. Soc. B. 363, 123–137.10.1098/rstb.2006.2016Search in Google Scholar

Roitbak, T., Li, L., and Cunningham, L.A. (2008). Neural stem/progenitor cells promote endothelial cell morphogenesis and protect endothelial cells against ischemia via HIF-1α-regulated VEGF signaling. J. Cerebr. Blood F. Met. 28, 1530–1542.10.1038/jcbfm.2008.38Search in Google Scholar

Rubin, L., Hall, D.E., Porter, S., Barbu, K., Cannon, C., Horner, H.C., and Morales, J. (1991). A cell culture model of the blood-brain barrier. J. Cell Biol. 115, 1725–1735.10.1083/jcb.115.6.1725Search in Google Scholar

Ruddy, R.M. and Morshead, C.M. (2018). Home sweet home: the neural stem cell niche throughout development and after injury. Cell Tissue Res. 371, 125–141.10.1007/s00441-017-2658-0Search in Google Scholar

Sasai, Y. (2013). Next-generation regenerative medicine: organogenesis from stem cells in 3D culture. Cell Stem Cell 12, 520–530.10.1016/j.stem.2013.04.009Search in Google Scholar

Scadden, D.T. (2006). The stem-cell niche as an entity of action. Nature 441, 1075–1079.10.1038/nature04957Search in Google Scholar PubMed

Schänzer, A., Wachs, F.P., Wilhelm, D., Acker, T., Cooper-Kuhn, C., and Beck, H. (2010). Direct stimulation of adult neural stem cells in vitro and neurogenesis in vivo by vascular endothelial growth factor. Brain Pathol. 14, 237–248.10.1111/j.1750-3639.2004.tb00060.xSearch in Google Scholar PubMed PubMed Central

Schofield, R. (1978). The relationship between the spleen colony-forming cell and the haemopoietic stem cell. Blood Cells 4, 7–25.Search in Google Scholar

Schwartz, M.P., Hou, Z., Propson, N.E., Zhang, J., and Thomson, J.A. (2015). Human pluripotent stem cell-derived neural constructs for predicting neural toxicity. Proc. Natl. Acad. Sci USA 112, 12516–12521.10.1073/pnas.1516645112Search in Google Scholar PubMed PubMed Central

Shen, Q., Goderie, S.K., and Jin, L. (2004). Endothelial cells stimulate self-renewal and expand neurogenesis of neural stem cells. Science 304, 1338–1340.10.1126/science.1095505Search in Google Scholar PubMed

Shen, Q., Wang, Y., Kokovay, E., Lin, G., Chuang, S.M., and Goderie, S.K. (2008). Adult SVZ stem cells lie in a vascular niche: a quantitative analysis of niche cell-cell interactions. Cell Stem Cell 3, 289–300.10.1016/j.stem.2008.07.026Search in Google Scholar PubMed PubMed Central

Shin, S., Lu, G., Cai, M., and Kim, K.S. (2005). Escherichia coli outer membrane protein A adheres to human brain microvascular endothelial cells. Biochem. Biophys. Res. Commun. 330, 1199–1204.10.1016/j.bbrc.2005.03.097Search in Google Scholar PubMed

Shin, Y., Yang, K., Han, S., Park, H.J., Heo, Y.S., and Cho, S.W. (2014). Reconstituting vascular microenvironment of neural stem cell niche in three-dimensional extracellular matrix. Adv. Healthc. Mater. 3, 1457.10.1002/adhm.201300569Search in Google Scholar PubMed

Silvavargas, V., Crouch, E.E., and Doetsch, F. (2013). Adult neural stem cells and their niche: a dynamic duo during homeostasis, regeneration, and aging. Curr. Opin. Neurobiol. 23, 935–942.10.1016/j.conb.2013.09.004Search in Google Scholar PubMed

Song, X., Zhu, C.H., and Doan, C. (2002). Germline stem cells anchored by adherens junctions in the Drosophila ovary niches. Science 296, 1855–1857.10.1126/science.1069871Search in Google Scholar PubMed

Sood, D., Chwalek, K., Stuntz, E., Pouli, D., Du, C., Tangschomer, M.D., and Kaplan, D.L. (2016). Fetal brain extracellular matrix boosts neuronal network formation in 3D bioengineered model of cortical brain tissue. ACS Biomater-Sci. Eng. 2, 131–140.10.1021/acsbiomaterials.5b00446Search in Google Scholar PubMed PubMed Central

Spradling, A., Drummond-Barbosa, D., and Kai, T. (2001). Stem cells find their niche. Nature 414, 98–104.10.1038/35102160Search in Google Scholar PubMed

Su, L., Zhao, B., and Lv, X. (2007). Safrole oxide is a useful tool for investigating the effect of apoptosis in vascular endothelial cells on neural stem cell survival and differentiation in vitro. Bioorg. Med. Chem. Lett. 17, 3167–3171.10.1016/j.bmcl.2007.03.032Search in Google Scholar PubMed

Sun, L., Hui, A.M., Su, Q., Vortmeyer, A., Kotliarov, Y., and Pastorino, S. (2006). Neuronal and glioma-derived stem cell factor induces angiogenesis within the brain. Cancer Cell 9, 287–300.10.1016/j.ccr.2006.03.003Search in Google Scholar PubMed

Sun, J., Zhou, W., Ma, D., and Yang, Y. (2010). Endothelial cells promote neural stem cell proliferation and differentiation associated with VEGF activated Notch and Pten signaling. Dev. Dynam. 239, 2345–2353.10.1002/dvdy.22377Search in Google Scholar PubMed

Sun, G.J., Yi, Z., Stadel, R.P., Moss, J., Yong, J.H., and Ito, S. (2015a). Tangential migration of neuronal precursors of glutamatergic neurons in the adult mammalian brain. Proc. Natl. Acad. Sci. USA 112, 9484–9489.10.1073/pnas.1508545112Search in Google Scholar PubMed PubMed Central

Sun, Y., Williams, A., Waisbourd, M., Iacovitti, L., and Katz, L.J. (2015b). Stem cell therapy for glaucoma: Science or snake oil? Surv. Ophthalmol. 60, 93–105.10.1016/j.survophthal.2014.07.001Search in Google Scholar PubMed

Tanentzapf, G., Devenport, D., Godt, D., and Brown, N.H. (2007). Integrin-dependent anchoring of a stem-cell niche. Nat. Cell Biol. 9, 1413–1418.10.1038/ncb1660Search in Google Scholar PubMed PubMed Central

Tarantini, S., Tran, C.H.T., Gordon, G.R., Ungvari, Z., and Csiszar, A. (2016). Impaired neurovascular coupling in aging and Alzheimer’s disease: contribution of astrocyte dysfunction and endothelial impairment to cognitive decline. Exp. Gerontol. 94, 52–58.10.1016/j.exger.2016.11.004Search in Google Scholar PubMed PubMed Central

Tavazoie, M., Vand, V.L., Silvavargas, V., Louissaint, M., Colonna, L., and Zaidi, B. (2008). A specialized vascular niche for adult neural stem cells. Cell Stem Cell 3, 289–300.10.1016/j.stem.2008.07.025Search in Google Scholar PubMed PubMed Central

Theocharis, A.D., Skandalis, S.S., Gialeli, C., and Karamanos, N.K. (2016). Extracellular matrix structure. Adv. Drug Deliv. Rev. 97, 4–27.10.1016/j.addr.2015.11.001Search in Google Scholar PubMed

Tobwala, S., Zhang, X., Zheng, Y., Wang, H.J., Banks, W.A., and Ercal, N. (2013). Disruption of the integrity and function of brain microvascular endothelial cells in culture by exposure to diesel engine exhaust particles. Toxicol. Lett. 220, 1–7.10.1016/j.toxlet.2013.03.023Search in Google Scholar PubMed PubMed Central

Tse, V., Xu, L., and Yung, Y.C. (2003). The temporal-spatial expression of VEGF, angiopoietins-1 and 2, and Tie-2 during tumor angiogenesis and their functional correlation with tumor neovascular architecture. Neurol. Res. 25, 729–738.10.1179/016164103101202084Search in Google Scholar PubMed

Uwamori, H., Higuchi, T., Arai, K., and Sudo, R. (2017). Integration of neurogenesis and angiogenesis models for constructing a neurovascular tissue. Sci. Rep. 7, 17349.10.1038/s41598-017-17411-0Search in Google Scholar PubMed PubMed Central

Vissapragada, R., Contreras, M.A., Silva, C.G., Kumar, V.A., Ochoa, A., Vasudevan, A., and Thomas, A.J. (2014). Bidirectional crosstalk between periventricular endothelial cells and neural progenitor cells promotes the formation of a neurovascular unit. Brain Res. 1565, 8–17.10.1016/j.brainres.2014.03.018Search in Google Scholar PubMed

Wada, T., Haigh, J.J., Ema, M., Hitoshi, S., Chaddah, R., Rossant, J., and Der Kooy, D.V. (2006). Vascular endothelial growth factor directly inhibits primitive neural stem cell survival but promotes definitive neural stem cell survival. J. Neurosci. 26, 6803–6812.10.1523/JNEUROSCI.0526-06.2006Search in Google Scholar PubMed PubMed Central

Walter, F.R., Valkai, S., Kincses, A., Petnehazi, A., Czeller, T., Veszelka, S., and Der, A. (2016). A versatile lab-on-a-chip tool for modeling biological barriers. Sensor Actuat B-Chem. 222, 1209–1219.10.1016/j.snb.2015.07.110Search in Google Scholar

Wang, Y.Q., Guo, X., Qiu, M.H., Feng, X., and Sun, F. (2007). VEGF overexpression enhances striatal neurogenesis in brain of adult rat after a transient middle cerebral artery occlusion. J. Neurosci. Res. 85, 73–82.10.1002/jnr.21091Search in Google Scholar PubMed

Ward, N.L. and Lamanna, J.C. (2004). The neurovascular unit and its growth factors: coordinated response in the vascular and nervous systems. Neurol. Res. 26, 870–883.10.1179/016164104X3798Search in Google Scholar PubMed

Weksler, B.B., Subileau, E.A., Perrière, N., Charneau, P., Holloway, K., Leveque, M., Tricoire-Leignel, H., Nicotra, A., Bourdoulous, S., Turowski, P., et al. (2005). Blood-brain barrier-specific properties of a human adult brain endothelial cell line. FASEB J. 19, 1872–1874.10.1096/fj.04-3458fjeSearch in Google Scholar PubMed

Wen, P., Sun, P., and Xi, R. (2011). Stem cell niche. Regen. Med. 217, 81–101.10.1007/978-90-481-9075-1_3Search in Google Scholar

Wurmser, A.E., Nakashima, K., Summers, R.G., Toni, N., Damour, K.A., Lie, D.C., and Gage, F.H. (2004). Cell fusion-independent differentiation of neural stem cells to the endothelial lineage. Nature 430, 350–356.10.1038/nature02604Search in Google Scholar PubMed

Xu, H., Li, Z., Yu, Y., Sizdahkhani, S., Ho, W.S., Yin, F., and Qin, J. (2016). A dynamic in vivo-like organotypic blood-brain barrier model to probe metastatic brain tumors. Sci. Rep. 6, 3667010.1038/srep36670Search in Google Scholar PubMed PubMed Central

Yamada, K.M. and Cukierman, E. (2007). Modeling tissue morphogenesis and cancer in 3D. Cell 130, 601–610.10.1016/j.cell.2007.08.006Search in Google Scholar PubMed

Yamada, N., Nakagawa, S., Horai, S., Tanaka, K., Deli, M.A., Yatsuhashi, H., and Niwa, M. (2014). Hepatocyte growth factor enhances the barrier function in primary cultures of rat brain microvascular endothelial cells. Microvasc. Res. 92, 41–49.10.1016/j.mvr.2013.12.004Search in Google Scholar PubMed

Yang, X.T., Bi, Y.Y., and Feng, D.F. (2011). From the vascular microenvironment to neurogenesis. Brain Res. Bull. 84, 1–7.10.1016/j.brainresbull.2010.09.008Search in Google Scholar PubMed

Yoshida, S., Sukeno, M., and Nabeshima, Y.I. (2007). A vasculature-associated niche for undifferentiated spermatogonia in the mouse testis. Science 317, 1722–1726.10.1126/science.1144885Search in Google Scholar PubMed

Zheng, W., Nowakowski, R.S., and Vaccarino, F.M. (2004). Fibroblast growth factor 2 is required for maintaining the neural stem cell pool in the mouse brain subventricular zone. Dev. Neurosci-Basel. 26, 181–196.10.1159/000082136Search in Google Scholar PubMed

Zhu, W., Mao, Y., and Zhou, L.F. (2006). Reduction of neural and vascular damage by transplantation of VEGF-secreting neural stem cells after cerebral ischemia. Acta Neurochir. Suppl. 95, 393–397.10.1007/3-211-32318-X_80Search in Google Scholar PubMed

Zlokovic, B.V. (2008). The blood-brain barrier in health and chronic neurodegenerative disorders. Neuron 57, 178–201.10.1016/j.neuron.2008.01.003Search in Google Scholar PubMed

Received: 2019-02-16
Accepted: 2019-06-10
Published Online: 2019-09-20
Published in Print: 2020-01-28

©2020 Walter de Gruyter GmbH, Berlin/Boston

Downloaded on 19.4.2024 from https://www.degruyter.com/document/doi/10.1515/revneuro-2019-0023/html
Scroll to top button