Skip to main content

Advertisement

Log in

Network Connectivity, Centrality and Fragmentation in the Greek-Key Protein Topology

  • Published:
The Protein Journal Aims and scope Submit manuscript

Abstract

Understanding and computationally predicting the protein folding process remains one of the most challenging scientific problems and has uniquely garnered the interdisciplinary efforts of researchers from both the biological, chemical, physical and computational disciplines. Previous studies have demonstrated the importance of long-range interactions in guiding the native structure. However, predicting how the native long-range interaction network forms to generate a specific topology from among all other conformations remains unresolved. The present research study conducts an exploratory study to identify amino acids and long-range interactions that have the potential to play a key role in building and maintaining the protein topology. Towards this end, the application of network science is utilized and developed to analyze the structures of a group of proteins that share a common Greek-key topology but differ in sequence, secondary structure and function. We investigate the idea that the residues with high betweeness centrality score are potentially significant in maintaining the protein network and in governing the Greek-key topology. This hypothesis is tested by two different computational methods: through a fragmentation test and by the analysis of diameter impacts. In summary, we find a subset of selected residues in similar geographical positions in all model proteins, which demonstrates the role of these specific residues and regions in governing the Greek-key topology from a network perspective.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Higman VA, Greene LH (2006) Elucidation of conserved long-range interaction networks in proteins and their significance in determining protein topology. Phys A 368(2):595–606

    Article  CAS  Google Scholar 

  2. Selvaraj S, Gromiha MM (2003) Role of hydrophobic clusters and long-range contact networks in the folding of ([alpha]/[beta])8 barrel proteins. Biophys J 84(3):1919–1925

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Sengupta D, Kundu S (2012) Role of long- and short-range hydrophobic, hydrophilic and charged residues contact network in protein’s structural organization. BMC Bioinform 13:142–142

    Article  CAS  Google Scholar 

  4. Gromiha MM, Selvaraj S (1999) Importance of long-range interactions in protein folding. Biophys Chem 77(1):49–68

    Article  CAS  PubMed  Google Scholar 

  5. Cregut D, Civera C, Macias MJ, Wallon G, Serrano L (1999) A tale of two secondary structure elements: when a β-hairpin becomes an α-helix. J Mol Biol 292(2):389–401

    Article  CAS  PubMed  Google Scholar 

  6. Dorogovtsev SN, Mendes JFF (2003) Evolution of networks: from biological nets to the internet and WWW. Oxford University Press, Oxford

    Book  Google Scholar 

  7. Winn MD, Ballard CC, Cowtan KD, Dodson EJ, Emsley P, Evans PR, Keegan RM, Krissinel EB, Leslie AGW, McCoy A, McNicholas SJ, Murshudov GN, Pannu NS, Potterton EA, Powell HR, Read RJ, Vagin A, Wilson KS (2011) Overview of the CCP4 suite and current developments. Acta Crystallogr Sect D 67(4):235–242

    Article  CAS  Google Scholar 

  8. Greene L, Higman V (2003) Uncovering network systems within protein structures. J Mol Biol 334:781–791

    Article  CAS  PubMed  Google Scholar 

  9. Di Paola L, Giuliani A (2015) Protein contact network topology: a natural language for allostery. Curr Opin Struct Biol 31:43–48

    Article  CAS  PubMed  Google Scholar 

  10. Miller EJ, Fischer KF, Marqusee S (2002) Experimental evaluation of topological parameters determining protein-folding rates. Proc Natl Acad Sci USA 99(16):10359–10363

    Article  CAS  PubMed  Google Scholar 

  11. Chen C, Li L, Xiao Y (2006) Identification of key residues in proteins by using their physical characters. Phys Rev E 73(4):041926

    Article  CAS  Google Scholar 

  12. Li J, Wang J, Wang W (2008) Identifying folding nucleus based on residue contact networks of proteins. Proteins 71(4):1899–1907

    Article  CAS  PubMed  Google Scholar 

  13. Aftabuddin M, Kundu S (2007) Hydrophobic, hydrophilic, and charged amino acid networks within protein. Biophys J 93(1):225–231

    Article  CAS  PubMed  Google Scholar 

  14. Khor S (2018) Folding with a protein’s native shortcut network. Proteins 86(9):924–934

    Article  CAS  PubMed  Google Scholar 

  15. Yan W, Zhou J, Sun M, Chen J, Hu G, Shen B (2014) The construction of an amino acid network for understanding protein structure and function. Amino Acids 46(6):1419–1439

    Article  CAS  PubMed  Google Scholar 

  16. Berglund H, Olerenshaw D, Sankar A, Federwisch M, McDonald NQ, Driscoll PC (2000) The three-dimensional solution structure and dynamic properties of the human FADD death domain. J Mol Biol 302(1):171–188

    Article  CAS  PubMed  Google Scholar 

  17. Eberstadt M, Huang B, Chen Z, Meadows RP, Ng S-C, Zheng L, Lenardo MJ, Fesik SW (1998) NMR structure and mutagenesis of the FADD (Mort1) death-effector domain. Nature 392(6679):941–945

    Article  CAS  PubMed  Google Scholar 

  18. Humke EW, Shriver SK, Starovasnik MA, Fairbrother WJ, Dixit VM (2000) ICEBERG: a novel inhibitor of interleukin-1β generation. Cell 103(1):99–111

    Article  CAS  PubMed  Google Scholar 

  19. Gitschier J, Moffat B, Reilly D, Wood WI, Fairbrother WJ (1998) Solution structure of the fourth metal-binding domain from the Menkes copper-transporting ATPase. Nat Struct Biol 5(1):47–54

    Article  CAS  PubMed  Google Scholar 

  20. Lindahl M, Svensson LA, Liljas A, Sedelnikova SE, Eliseikina IA, Fomenkova NP, Nevskaya N, Nikonov SV, Garber MB, Muranova TA (1994) Crystal structure of the ribosomal protein S6 from Thermus thermophilus. EMBO J 13(6):1249–1254

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Thunnissen MMGM, Taddei N, Liguri G, Ramponi G, Nordlund P (1997) Crystal structure of common type acylphosphatase from bovine testis. Structure 5(1):69–79

    Article  CAS  PubMed  Google Scholar 

  22. Improta S, Politou AS, Pastore A (1996) Immunoglobulin-like modules from titin I-band: extensible components of muscle elasticity. Structure 4(3):323–337

    Article  CAS  PubMed  Google Scholar 

  23. Holden HM, Ito M, Hartshorne DJ, Rayment I (1992) X-ray structure determination of telokin, the C-terminal domain of myosin light chain kinase, at 2.8 Å resolution. J Mol Biol 227(3):840–851

    Article  CAS  PubMed  Google Scholar 

  24. Leahy D, Hendrickson W, Aukhil I, Erickson H (1992) Structure of a fibronectin type III domain from tenascin phased by MAD analysis of the selenomethionyl protein. Science 258(5084):987–991

    Article  CAS  PubMed  Google Scholar 

  25. Vendruscolo M, Dokholyan NV, Paci E, Karplus M (2002) Small-world view of the amino acids that play a key role in protein folding. Phys Rev E 65(6):061910

    Article  CAS  Google Scholar 

  26. Mrvar A, Batagelj V (2016) Analysis and visualization of large networks with program package Pajek. Complex Adapt Syst Model 4(1):6

    Article  Google Scholar 

  27. de Nooy W, Mrvar A, Batagelj V (2011) Exploratory social network analysis, 2nd edn. Cambridge University Press, New York

    Book  Google Scholar 

  28. Albert R, Jeong H, Barabási A-L (2000) Error and attack tolerance of complex networks. Nature 406(6794):378–382

    Article  CAS  PubMed  Google Scholar 

  29. Takes FW, Kosters WA (2011) Determining the diameter of small world networks. Paper presented at the Proceedings of the 20th ACM international conference on information and knowledge management, Glasgow, Scotland, UK

  30. Greene LH (2012) Protein structure networks. Brief Funct Genom 11(6):469–478

    Article  Google Scholar 

  31. Greene LH, Grant T (2012) Protein folding by ‘levels of separation’: a hypothesis. FEBS Lett 586:962–966

    Article  CAS  PubMed  Google Scholar 

  32. Fersht AR (1999) Structure and mechanism in protein science. WH Freeman and Company, New York

    Google Scholar 

  33. Fersht AR, Sato S (2004) Φ-Value analysis and the nature of protein-folding transition states. Proc Natl Acad Sci USA 101(21):7976–7981

    Article  CAS  PubMed  Google Scholar 

  34. Otzen DE, Oliveberg M (2002) Conformational plasticity in folding of the split β-α-β protein S6: evidence for burst-phase disruption of the native state. J Mol Biol 317(4):613–627

    Article  CAS  PubMed  Google Scholar 

  35. Fowler SB, Clarke J (2001) Mapping the folding pathway of an immunoglobulin domain: structural detail from phi value analysis and movement of the transition state. Structure 9(5):355–366

    Article  CAS  PubMed  Google Scholar 

  36. Steward A, McDowell GS, Clarke J (2009) Topology is the principal determinant in the folding of a complex all-alpha Greek key death domain from human FADD. J Mol Biol 389(2):425–437

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Cota E, Steward A, Fowler SB, Clarke J (2001) The folding nucleus of a fibronectin type III domain is composed of core residues of the immunoglobulin-like fold. J Mol Biol 305(5):1185–1194

    Article  CAS  PubMed  Google Scholar 

  38. Chiti F, Taddei N, White PM, Bucciantini M, Magherini F, Stefani M, Dobson CM (1999) Mutational analysis of acylphosphatase suggests the importance of topology and contact order in protein folding. Nat Struct Mol Biol 6(11):1005–1009

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work is funded in part by the Natural Science Foundation of China under Grant No. 61728211 and National Science Foundation under Grant No. 1066471 (YL).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Lesley H. Greene.

Ethics declarations

Conflict of interest

The authors do not have any conflicts of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (PDF 1344 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Haratipour, Z., Aldabagh, H., Li, Y. et al. Network Connectivity, Centrality and Fragmentation in the Greek-Key Protein Topology. Protein J 38, 497–505 (2019). https://doi.org/10.1007/s10930-019-09850-7

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10930-019-09850-7

Keywords

Navigation