Skip to main content
Log in

Investigation on Secondary Structure Alterations of Protein Drugs as an Indicator of Their Biological Activity Upon Thermal Exposure

  • Published:
The Protein Journal Aims and scope Submit manuscript

Abstract

Protein drugs are important therapeutic agents however; they may degrade during formulation processing. The objective of this study was to investigate the correlation between secondary structure alterations and the retentions of biological activity of protein upon the application of thermal stress. Catalase, horseradish peroxidase and α- chymotrypsin were employed as model proteins. Each protein was heated in a solid and solution state at a temperature of 70 °C for 1 h. Attenuated total reflectance Fourier transform infrared spectroscopy, size-exclusion chromatography and biological activity assay were performed. Results showed that heat-exposure of protein solids at 70 °C caused minimum changes in secondary structure and biological activity was almost retained. However, thermal exposure of protein aqueous solution induced significant changes in the secondary structure indicated by area overlap values and caused considerable reduction in the biological activity. The changes in secondary structures were found to be in full alignment with the loss of biological activity for both protein solids as well as aqueous solutions. Catalase lost entire biological activity upon heating in the solution state. In conclusion, the findings of the present study indicate a direct correlation between protein secondary structure alterations and the retention of biological activity which can be taken into account during the development and delivery of protein drugs formulations.

Graphical Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Akbal-Delibas B, Haspel NA (2013) Conservation and biophysics guided stochastic approach to refining docked multimeric proteins. BMC Struct Biol 13:S7

    Article  PubMed  PubMed Central  Google Scholar 

  2. Jain NA, Roy I (2005) Effect of trehalose on protein structure. Protein Sci 18:24–36

    Google Scholar 

  3. Frokjaer S, Otzen DE (2005) Protein drug stability: a formulation challenge. Nat Rev Drug Discov 4:298–306

    Article  CAS  PubMed  Google Scholar 

  4. Wang W (1999) Instability, stabilization, and formulation of liquid protein pharmaceuticals. Int J Pharm 185:129–188

    Article  CAS  PubMed  Google Scholar 

  5. Jeong SH (2012) Analytical methods and formulation factors to enhance protein stability in solution. Arch Pharm Res 35:1871–1886

    Article  CAS  PubMed  Google Scholar 

  6. Cromwell MEM, Hilario E, Jacobson F (2006) Protein aggregation and bioprocessing. AAPS J 8:572–579

    Article  Google Scholar 

  7. Graziano G, Catanzano F, Riccio A, Barone G (1997) A reassessment of the molecular origin of cold denaturation. J Biochem 122:395–401

    Article  CAS  PubMed  Google Scholar 

  8. Pikal MJ, Rigsbee D, Roy ML (2008) Solid state stability of proteins III: calorimetric (DSC) and spectroscopic (FTIR) characterization of thermal denaturation in freeze dried human growth hormone (Hgh). J Pharm Sci 97:5122–5131

    Article  CAS  PubMed  Google Scholar 

  9. Nakanishi K, Sakiyama T, Imamura K (2001) On the adsorption of proteins on solid surfaces, a common but very complicated phenomenon. J Biosci Bioeng 91:233–244

    Article  CAS  PubMed  Google Scholar 

  10. Roach P, Farrar D, Perry CC (2005) Interpretation of protein adsorption: surface-induced conformational changes. J Am Chem Soc 127:8168–8173

    Article  CAS  PubMed  Google Scholar 

  11. Van der Veen M, Stuart MC, Norde W (2007) Spreading of proteins and its effects on adsorption and desorption kinetics. Colloids Surf B 54:136–142

    Article  CAS  Google Scholar 

  12. Jorgensen L, Martins S, van de Weert M (2009) Analysis of protein physical stability in lipid based delivery systems-the challenges of lipid drug delivery systems. J Biomed Nanotechnol 5:401–408

    Article  CAS  PubMed  Google Scholar 

  13. Gallarate M, Battaglia L, Peira E, Trotta M (2011) Peptide-loaded solid lipid nanoparticles prepared through coacervation technique. Int J Chem. Article: 132435

  14. Dolatabadi JEN, Valizadeh H, Hamishehkar H (2015) Solid lipid nanoparticles as efficient drug and gene delivery systems: recent breakthroughs. Adv Pharm Bull 5:151–159

    Article  CAS  Google Scholar 

  15. Naseri N, Valizadeh H, Zakeri-Milani P (2015) Solid lipid nanoparticles and nanostructured lipid carriers: structure, preparation and application. Adv Pharm Bull 5:305–313

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Mohl S, Winter G (2004) Continuous release of rh-interferon α-2a from triglyceride matrices. J Control Rel 97:67–78

    Article  CAS  Google Scholar 

  17. Koennings S, Sapin A, Blunk T, Menei P, Goepferich A (2007) Towards controlled release of BDNF- Manufacturing strategies for protein-loaded lipid implants and biocompatibility evaluation in the brain. J Control Rel 119:163–172

    Article  CAS  Google Scholar 

  18. Schwab M, Kessler B, Wolf E, Jordon G, Mohl S, Winter G (2008) Correlation of in vivo and in vitro release data for rh-INFα lipid implants. Eur J Pharm Biopharm 70:690–694

    Article  CAS  PubMed  Google Scholar 

  19. Kreye F, Siepmann F, Zimmer A, Willart JF, Descamps M, Siepmann J (2011) Controlled release implants based on cast lipid blends. Eur J Pharm Sci 43:78–83

    Article  CAS  PubMed  Google Scholar 

  20. Jensen SS, Jensen H, Møller EH, Cornett C, Siepmann F, Siepmann J, Østergaard J (2016) In vitro release studies of insulin from lipid implants in solution and in a hydrogel matrix mimicking the subcutis. Eur J Pharm Sci 81:103–112

    Article  CAS  PubMed  Google Scholar 

  21. Zeeshan F, Tabbassum M, Jorgensen L, Medlicott NJ (2018) Investigation on secondary structure perturbations of proteins embedded in solid lipid matrices as a novel indicator of their biological activity upon in vitro release. AAPS Pharmscitech 19(2):769–782

    Article  CAS  PubMed  Google Scholar 

  22. Zeeshan F, Tabbassum M, Jorgensen L, Medlicott NJ (2018) Attenuated Total Reflection Fourier Transform Infrared (ATR FT-IR) spectroscopy as an analytical method to investigate the secondary structure of a model protein embedded in solid lipid matrices. Appl Spectrosc 72(2):268–279

    Article  CAS  PubMed  Google Scholar 

  23. Kendrick BS, Dong A, Allison SD, Manning MC, Carpenter JF (1996) Quantitation of the area of overlap between second-derivative amide I infrared spectra to determine the structural similarity of a protein in different states. J Pharm Sci 85:155–158

    Article  CAS  PubMed  Google Scholar 

  24. Pinto PCAG, Costa ADF, Lima JLFC, Saraiva MLMFS (2011) Automated evaluation of the effect of ionic liquids on catalase activity. Chemosphere 82:1620–1628

    Article  CAS  PubMed  Google Scholar 

  25. Mikatos A, Panderi I (2004) Determination of the carboxylic acid metabolite of clopidogrel in human plasma by liquid chromatography-electrospray ionisation mass spectrometery. Analytica Chim Acta 505:107–114

    Article  CAS  Google Scholar 

  26. Wheelis M (2008) Principles of modern microbiology, 2nd edn. Jones and Bartlett Publishers, Sudbury

    Google Scholar 

  27. Chance B, Maehly AC (1955) Assay of catalase and peroxidase. Meth Enzymol 2:764–775

    Article  Google Scholar 

  28. Ryan O, Smyth MR, Fágáin CO (1994) Horseradish peroxidase: the analyst’s friend. Essays Biochem 28:129–146

    CAS  PubMed  Google Scholar 

  29. Schwert GW, Takenaka YA (1955) Spectrophotometric determination of trypsin and chymotrypsin. Biochem Biophys Acta 16:570–575

    Article  CAS  PubMed  Google Scholar 

  30. Kang SH, Fuchs MS (1973) The identification of two protease inhibitors in Drosophilia Melanogaster. Comp Biochem Physiol B 46:367–374

    Article  CAS  PubMed  Google Scholar 

  31. Chelikani P, Fita I, Loewen PC (2004) Diversity of structures and properties among catalases. Cell Mol Life Sci 61:192–208

    Article  CAS  PubMed  Google Scholar 

  32. Tan A, Rao S, Prestidge CA (2013) Transforming lipid-based oral drug delivery systems into solid dosage forms: an overview of solid carriers, physicochemical properties, and biopharmaceutical performance. Pharm Res 30:2993–3017

    Article  CAS  PubMed  Google Scholar 

  33. Liao YH, Brown MB, Nazir T, Quader A, Martin GP (2002) Effects of sucrose and trehalose on the preservation of the native structure of spray-dried lysozyme. Pharm Res 19:1847–1853

    Article  CAS  PubMed  Google Scholar 

  34. Ge S, Kojio K, Takahara A, Koriyama T (1998) Bovine serum albumin adsorption onto immobilized organotrichlorosilane surface: influence of the phase separation on protein adsorption patterns. J Biomater Sci Polym Ed 9:131–150

    Article  CAS  PubMed  Google Scholar 

  35. Pikal MJ, Dellerman KM, Roy ML, Riggin RM (1991) The effects of formulation variables on the stability of freeze-dried human growth hormone. Pharm Res 8:427–436

    Article  CAS  PubMed  Google Scholar 

  36. Veitch NC (2004) Horseradish peroxidase: a modern view of a classic enzyme. Photochemistry 65:249–259

    Article  CAS  Google Scholar 

  37. Carlsson GH, Nicholls P, Svistunenko D, Berglund GI, Hajdu J (2005) Complexes of horseradish peroxidase with formate, acetate, and carbon monoxide. Biochemistry 44:635–642

    Article  CAS  PubMed  Google Scholar 

  38. Chattopadhyay K, Mazumdar S (2000) Structural and conformational stability of horseradish peroxidase: effect of temperature and pH. Biochemistry 39(1):263–270

    Article  CAS  PubMed  Google Scholar 

  39. Alsenaidy MA, Jain NK, Kim JH, Middaugh R, Volkin DB (2014) Protein comparability assessments and potential applicability of high throughput biophysical methods and data visualization tools to compare physical stability profiles. Front Pharmacol 5:1–19

    Article  CAS  Google Scholar 

  40. Harris TK, Keshwani MM (2009) Measurement of Enzyme Activity. In: Burges RR, Deutscher MP (eds) Methods in enzymology. Elsevier, Amsterdam, pp 58–73

    Google Scholar 

  41. Daniel RM, Danson MJ, Hough DW, Lee CK, Peterson ME, Cowan DA (2008) Enzyme stability and activity at high temperatures. In: Siddiqui KS, Thomas T (eds) Protein adaptation in extremophiles. Nova Publishers, New York, pp 1–34

    Google Scholar 

  42. Hashemnia S, Moosavi-Movahedi AA, Ghourchian H, Ahmad F, Hakimelahi GH, Saboury AA (2006) Diminishing of aggregation for bovine liver catalase through acidic residuesmodification. Int J Biol Macromolec 40:47–53

    Article  CAS  Google Scholar 

  43. Siwale RC, Oettinger CE, Pai SB, Addo R, Uddin N, Siddig A, D’Souza MJ (2009) Formulation and characterization of catalase in albumin microspheres. J Microencapsul 26:411–419

    Article  CAS  PubMed  Google Scholar 

  44. Ghalanbor Z, Korber M, Bodmeier R (2010) Improved lysozyme stability and release properties of poly (lactide-co-glycolide) implants prepared by hot-melt extrusion. Pharm Res 27:371–379

    Article  CAS  PubMed  Google Scholar 

  45. Flores-Fernandez GM, Griebenow K (2012) Glycosylation improves α-chymotrypsin stability upon encapsulation in poly (lactic-co-glycolic) acid microspheres. Results Pharm Sci 2:46–51

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors would like to thank University of Otago, Dunedin, New Zealand for providing the funding that made this study possible.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Prashant Kesharwani.

Ethics declarations

Conflict of interest

There is no conflict of interest and disclosures associated with the manuscript.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zeeshan, F., Tabbassum, M. & Kesharwani, P. Investigation on Secondary Structure Alterations of Protein Drugs as an Indicator of Their Biological Activity Upon Thermal Exposure. Protein J 38, 551–564 (2019). https://doi.org/10.1007/s10930-019-09837-4

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10930-019-09837-4

Keywords

Navigation