Skip to main content
Log in

Improved deep learning-based macromolecules structure classification from electron cryo-tomograms

  • Special Issue Paper
  • Published:
Machine Vision and Applications Aims and scope Submit manuscript

Abstract

Cellular processes are governed by macromolecular complexes inside the cell. Study of the native structures of macromolecular complexes has been extremely difficult due to lack of data. With recent breakthroughs in Cellular Electron Cryo-Tomography (CECT) 3D imaging technology, it is now possible for researchers to gain accesses to fully study and understand the macromolecular structures single cells. However, systematic recovery of macromolecular structures from CECT is very difficult due to high degree of structural complexity and practical imaging limitations. Specifically, we proposed a deep learning-based image classification approach for large-scale systematic macromolecular structure separation from CECT data. However, our previous work was only a very initial step toward exploration of the full potential of deep learning-based macromolecule separation. In this paper, we focus on improving classification performance by proposing three newly designed individual CNN models: an extended version of (Deep Small Receptive Field) DSRF3D, donated as DSRF3D-v2, a 3D residual block-based neural network, named as RB3D, and a convolutional 3D (C3D)-based model, CB3D. We compare them with our previously developed model (DSRF3D) on 12 datasets with different SNRs and tilt angle ranges. The experiments show that our new models achieved significantly higher classification accuracies. The accuracies are not only higher than 0.9 on normal datasets, but also demonstrate potentials to operate on datasets with high levels of noises and missing wedge effects presented.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Abadi, M., Barham, P., Chen, J., Chen, Z., Davis, A., Dean, J., Devin, M., Ghemawat, S., Irving, G., Isard, M. et al.: Tensorflow: a system for large-scale machine learning (2016). arXiv:1605.08695

  2. Bartesaghi, A., Sprechmann, P., Liu, J., Randall, G., Sapiro, G., Subramaniam, S.: Classification and 3D averaging with missing wedge correction in biological electron tomography. J. Struct. Biol. 162(3), 436–450 (2008)

    Article  Google Scholar 

  3. Beck, M., Lui, V., Förster, F., Baumeister, W., Medalia, O.: Snapshots of nuclear pore complexes in action captured by cryo-electron tomography. Nature 449(7162), 611–615 (2007)

    Article  Google Scholar 

  4. Beck, M., Malmström, J.A., Lange, V., Schmidt, A., Deutsch, E.W., Aebersold, R.: Visual proteomics of the human pathogen Leptospira interrogans. Nat. Methods 6(11), 817–823 (2009)

    Article  Google Scholar 

  5. Berman, H.M., Westbrook, J., Feng, Z., Gilliland, G., Bhat, T.N., Weissig, H., Shindyalov, I.N., Bourne, P.E.: The protein data bank. Nucl. Acids Res. 28(1), 235 (2000)

    Article  Google Scholar 

  6. Bharat, T.A.M., Russo, C.J., Löwe, J., Passmore, L.A., Scheres, S.H.W.: Advances in single-particle electron cryomicroscopy structure determination applied to sub-tomogram averaging. Structure 23(9), 1743–1753 (2015)

    Article  Google Scholar 

  7. Briggs, J.A.G.: Structural biology in situ the potential of subtomogram averaging. Curr. Opin. Struct. Biol. 23(2), 261–267 (2013)

    Article  MathSciNet  Google Scholar 

  8. Chen, M., Dai, W., Sun, Y., Jonasch, D., He, C.Y., Schmid, M.F., Chiu, W., Ludtke, S.J.: Convolutional neural networks for automated annotation of cellular cryo-electron tomograms (2017). arXiv:1701.05567

  9. Chen, X., Chen, Y., Schuller, J.M., Navab, N., Forster, F.: Automatic particle picking and multi-class classification in cryo-electron tomograms. In: 2014 IEEE 11th International Symposium on Biomedical Imaging (ISBI), pp. 838–841. IEEE (2014)

  10. Chollet, F.: keras (2015). https://github.com/fchollet/keras. Accessed 10 May 2017

  11. Delgado, L., Martínez, G., López-Iglesias, C., Mercadé, E.: Cryo-electron tomography of plunge-frozen whole bacteria and vitreous sections to analyze the recently described bacterial cytoplasmic structure, the stack. J. Struct. Biol. 189(3), 220–229 (2015)

    Article  Google Scholar 

  12. Förster, F., Pruggnaller, S., Seybert, A., Frangakis, A.S.: Classification of cryo-electron sub-tomograms using constrained correlation. J. Struct. Biol. 161(3), 276–286 (2008)

    Article  Google Scholar 

  13. Frank, J.: Three-dimensional electron microscopy of macromolecular assemblies. Oxford University Press, New York (2006)

    Book  Google Scholar 

  14. Galaz-Montoya, J.G., Flanagan, J., Schmid, M.F., Ludtke, S.J.: Single particle tomography in eman2. J. Struct. Biol. 190(3), 279–290 (2015)

    Article  Google Scholar 

  15. Gan, L., Jensen, G.J.: Electron tomography of cells. Q. Rev. Biophys. 45(01), 27–56 (2012)

    Article  Google Scholar 

  16. Goodfellow, I., Bengio, Y., Courville, A.: Deep Learning. MIT Press (2016). http://www.deeplearningbook.org. Accessed 15 June 2017

  17. Goodfellow, I., Warde-Farley, D., Mirza, M., Courville, A., Bengio, Y.: Maxout networks. In: Dasgupta S., McAllester D. (eds.) Proceedings of the 30th International Conference on Machine Learning, volume 28 of Proceedings of Machine Learning Research, pp. 1319–1327, Atlanta, Georgia, USA, 17–19 Jun 2013. PMLR

  18. Grünewald, K., Desai, P., Winkler, D.C., Heymann, J.B., Belnap, D.M., Baumeister, W., Steven, A.C.: Three-dimensional structure of herpes simplex virus from cryo-electron tomography. Science 302(5649), 1396–1398 (2003)

    Article  Google Scholar 

  19. Grünewald, K., Medalia, O., Gross, A., Steven, A.C., Baumeister, W.: Prospects of electron cryotomography to visualize macromolecular complexes inside cellular compartments: implications of crowding. Biophys. Chem. 100(1), 577–591 (2002)

    Article  Google Scholar 

  20. He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition (2015). arXiv:1512.03385

  21. Jasnin, M., Ecke, M., Baumeister, W., Gerisch, G.: Actin organization in cells responding to a perforated surface, revealed by live imaging and cryo-electron tomography. Structure 24(7), 1031–1043 (2016)

    Article  Google Scholar 

  22. Krizhevsky, A., Sutskever, I., Hinton, G.E.: Imagenet classification with deep convolutional neural networks. Commun. ACM 60(6), 84–90 (2017)

    Article  Google Scholar 

  23. Lučić, V., Rigort, A., Baumeister, W.: Cryo-electron tomography: the challenge of doing structural biology in situ. J. Cell Biol. 202(3), 407–419 (2013)

    Article  Google Scholar 

  24. Nesterov, Y.: A method of solving a convex programming problem with convergence rate o (1/k2). Soviet Mathematics Doklady 27, 372–376 (1983)

    MATH  Google Scholar 

  25. Nickell, S., Förster, F., Linaroudis, A., Net, W.D., Beck, F., Hegerl, R., Baumeister, W., Plitzko, J.M.: TOM software toolbox: acquisition and analysis for electron tomography. J. Struct. Biol. 149(3), 227–234 (2005)

    Article  Google Scholar 

  26. Nickell, S., Kofler, C., Leis, A.P., Baumeister, W.: A visual approach to proteomics. Nat. Rev. Mol. Cell Biol. 7(3), 225–230 (2006)

    Article  Google Scholar 

  27. Pedregosa, F., Varoquaux, G., Gramfort, A., Michel, V., Thirion, B., Grisel, O., Blondel, M., Prettenhofer, P., Weiss, R., Dubourg, V., et al.: Scikit-learn: Machine learning in python. J. Mach. Learn. Res. 12, 2825–2830 (2011)

    MathSciNet  MATH  Google Scholar 

  28. Pei, L., Xu, M., Frazier, Z., Alber, F.: Simulating cryo electron tomograms of crowded cell cytoplasm for assessment of automated particle picking. BMC Bioinform. 17, 405 (2016)

    Article  Google Scholar 

  29. Pei, L., Xu, M., Frazier, Z., Alber, F.: Simulating cryo electron tomograms of crowded cell cytoplasm for assessment of automated particle picking. BMC Bioinform. 17(1), 405 (2016)

    Article  Google Scholar 

  30. Polyak, B.T.: Some methods of speeding up the convergence of iteration methods. USSR Comput. Math. Math. Phys. 4(5), 1–17 (1964)

    Article  Google Scholar 

  31. Russakovsky, O., Deng, J., Su, H., Krause, J., Satheesh, S., Ma, S., Huang, Z., Karpathy, A., Khosla, A., Bernstein, M., et al.: Imagenet large scale visual recognition challenge. Int. J. Comput. Vis. 115(3), 211–252 (2015)

    Article  MathSciNet  Google Scholar 

  32. Scheres, S.H.W., Melero, R., Valle, M., Carazo, J.M.: Averaging of electron subtomograms and random conical tilt reconstructions through likelihood optimization. Structure 17(12), 1563–1572 (2009)

    Article  Google Scholar 

  33. Simonyan, K., Zisserman, A.: Very deep convolutional networks for large-scale image recognition (2014). arXiv:1409.1556

  34. Srivastava, N., Hinton, G.E., Krizhevsky, A., Sutskever, I., Salakhutdinov, R.: Dropout: a simple way to prevent neural networks from overfitting. J. Mach. Learn. Res. 15(1), 1929–1958 (2014)

    MathSciNet  MATH  Google Scholar 

  35. Szegedy, C., Ioffe, S., Vanhoucke, V.: Inception-v4, inception-resnet and the impact of residual connections on learning (2016). arXiv:1602.07261

  36. Tran, D., Bourdev, L.D., Fergus, R., Torresani, L., Paluri, M.: C3D: generic features for video analysis. CoRR abs/1412.0767 2(7), 8 (2014)

    Google Scholar 

  37. Wieczorek, M., Mesch, M., Sales de Andrade, E., Oshchepkov, I., Heroxbd: Shtools/shtools: Version 4.0, Dec. 2016

  38. Wriggers, W., Milligan, R.A., McCammon, J.A.: Situs: a package for docking crystal structures into low-resolution maps from electron microscopy. J. Struct. Biol. 125(2–3), 185–195 (1999)

    Article  Google Scholar 

  39. Xu, M., Beck, M., Alber, F.: High-throughput subtomogram alignment and classification by Fourier space constrained fast volumetric matching. J. Struct. Biol. 178(2), 152–164 (2012)

    Article  Google Scholar 

  40. Xu, M., Li, W., James, G.M., Mehan, M.R., Zhou, X.J.: Automated multidimensional phenotypic profiling using large public microarray repositories. Proc. Natl. Acad. Sci. 106(30), 12323–12328 (2009)

    Article  Google Scholar 

  41. Xu, M., Zhang, S., Alber, F.: 3d rotation invariant features for the characterization of molecular density maps. In: 2009 IEEE International Conference on Bioinformatics and Biomedicine, pp. 74–78. IEEE (2009)

  42. Xu, M., Alber, F.: Automated target segmentation and real space fast alignment methods for high-throughput classification and averaging of crowded cryo-electron subtomograms. Bioinformatics 29(13), i274–i282 (2013)

    Article  Google Scholar 

  43. Xu, M., Beck, M., Alber, F.: Template-free detection of macromolecular complexes in cryo electron tomograms. Bioinformatics 27(13), i69–i76 (2011)

    Article  Google Scholar 

  44. Xu, M., Chai, X., Muthakana, H., Liang, X., Yang, G., Zeev-Ben-Mordehai, T., Xing, E.: Deep learning based subdivision approach for large scale macromolecules structure recovery from electron cryo tomograms. ISMB/ECCB 2017, Bioinformatics (2017, in press). Preprint. arXiv:1701.08404

  45. Xu, M., Tocheva, E.I., Chang, Y.-W., Jensen, G.J., Alber, F.: De novo visual proteomics in single cells through pattern mining (2015). arXiv:1512.09347

  46. Xu, X.P., Page, C., Volkmann, N.: Efficient Extraction of Macromolecular Complexes from Electron Tomograms Based on Reduced Representation Templates. Springer, Berlin (2015)

    Book  Google Scholar 

  47. Zeev-Ben-Mordehai, T., Vasishtan, D., Durán, A.H., Vollmer, B., White, P., Pandurangan, A.P., Siebert, C.A., Topf, M., Grünewald, K.: Two distinct trimeric conformations of natively membrane-anchored full-length herpes simplex virus 1 glycoprotein b. Proc. Natl. Acad. Sci. 113(15), 4176–4181 (2016)

    Article  Google Scholar 

  48. Zeng, X., Leung, M.R., Zeev-Ben-Mordehai, T., Xu, M.: A convolutional autoencoder approach for mining features in cellular electron cryo-tomograms and weakly supervised coarse segmentation. J. Struct. Biol. https://doi.org/10.1016/j.jsb.2017.12.015 (2017). arXiv:1706.04970

  49. Zhang, P.: Correlative cryo-electron tomography and optical microscopy of cells. Curr. Opin. Struct. Biol. 23(5), 763–770 (2013)

    Article  Google Scholar 

Download references

Acknowledgements

This work was supported in part by U.S. National Institutes of Health (NIH) Grant P41 GM103712. John Galeotti acknowledges support from NIH R01 Grant 1R01EY021641, National Library of Medicine contract HHSN27620100058OP and DoD Peer Reviewed Medical Research Program (PR130773, HRPO Log No. A-18237). Min Xu acknowledge support of Samuel and Emma Winters Foundation.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to John Galeotti or Min Xu.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Che, C., Lin, R., Zeng, X. et al. Improved deep learning-based macromolecules structure classification from electron cryo-tomograms. Machine Vision and Applications 29, 1227–1236 (2018). https://doi.org/10.1007/s00138-018-0949-4

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00138-018-0949-4

Keywords

Navigation