Skip to main content

Advertisement

Log in

Persistent clonal cytogenetic abnormality with del(20q) from an initial diagnosis of acute promyelocytic leukemia

  • Case Report
  • Published:
International Journal of Hematology Aims and scope Submit manuscript

Abstract

A 68-year-old male was diagnosed with acute promyelocytic leukemia (APL). A G-banding chromosomal analysis revealed the co-existence of two clones: one with del(20q) and t(15;17)(q22;q12) and another with del(20q) alone. During the remission of APL following treatment with all-trans-retinoic acid, del(20q) was persistently identified, indicating a diagnosis of cytogenetic abnormalities of undetermined significance (CCAUS) with isolated del(20q). Bicytopenia developed 48 months after the remission of APL. The presence of isolated del(20q) was detected in the G-banding analysis, whereas morphological dysplasia of hematopoietic cells was not confirmed. This case showed indolent progression from CCAUS after the remission of APL to clonal cytopenia of undetermined significance (CCUS). CCUS with isolated del(20q) persisted for 24 months without any finding of hematological malignancies. At the most recent follow-up, targeted capture sequencing showed the U2AF1 S34F mutation. Considerable attention needs to be paid in follow-ups for CCAUS with del(20q) after the treatment of leukemia.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Busque L, Mio R, Mattioli J, Brais E, Blais N, Lalonde Y, et al. Nonrandom X-inactivation patterns in normal females: lyonization ratios vary with age. Blood. 1996;88(1):59–655.

    Article  CAS  PubMed  Google Scholar 

  2. Champion KM, Gilbert JG, Asimakopoulos FA, Hinshelwood S, Green AR. Clonal haemopoiesis in normal elderly women: implications for the myeloproliferative disorders and myelodysplastic syndromes. Br J Haematol. 1997;97(4):920–6.

    Article  CAS  PubMed  Google Scholar 

  3. Steensma DP, Bejar R, Jaiswal S, Lindsley RC, Sekeres MA, Hasserjian RP, et al. Clonal hematopoiesis of indeterminate potential and its distinction from myelodysplastic syndromes. Blood. 2015;126(1):9–16.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Bejar R. CHIP, ICUS, CCUS and other four-letter words. Leukemia. 2017;31(9):1869–71.

    Article  CAS  PubMed  Google Scholar 

  5. Takahashi K, Wang F, Kantarjian H, Doss D, Khanna K, Thompson E, et al. Preleukaemic clonal haemopoiesis and risk of therapy-related myeloid neoplasms: a case–control study. Lancet Oncol. 2017;18(1):100–11.

    Article  PubMed  Google Scholar 

  6. Jaiswal S, Fontanillas P, Flannick J, Manning A, Grauman PV, Mar BG, et al. Age-related clonal hematopoiesis associated with adverse outcomes. N Engl J Med. 2014;371(26):2488–98.

    Article  PubMed  PubMed Central  Google Scholar 

  7. Kunimoto H, Nakajima H. Epigenetic dysregulation of hematopoietic stem cells and preleukemic state. Int J Hematol. 2017;106(1):34–44.

    Article  CAS  PubMed  Google Scholar 

  8. Tang G, Medeiros LJ, Wang SA. How I investigate Clonal cytogenetic abnormalities of undetermined significance. Int J Lab Hematol. 2018;40(4):385–91.

    Article  CAS  PubMed  Google Scholar 

  9. Deininger MW, Cortes J, Paquette R, Park B, Hochhaus A, Baccarani M, et al. The prognosis for patients with chronic myeloid leukemia who have clonal cytogenetic abnormalities in Philadelphia chromosome-negative cells. Cancer. 2007;110(7):1509–19.

    Article  PubMed  Google Scholar 

  10. Medina J, Kantarjian H, Talpaz M, O'Brien S, Garcia-Manero G, Giles F, et al. Chromosomal abnormalities in Philadelphia chromosome-negative metaphases appearing during imatinib mesylate therapy in patients with Philadelphia chromosome-positive chronic myelogenous leukemia in chronic phase. Cancer. 2003;98(9):1905–11.

    Article  CAS  PubMed  Google Scholar 

  11. Kwok B, Hall JM, Witte JS, Xu Y, Reddy P, Lin K, et al. MDS-associated somatic mutations and clonal hematopoiesis are common in idiopathic cytopenias of undetermined significance. Blood. 2015;126(21):2355–61.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Yoshizato T, Nannya Y, Atsuta Y, Shiozawa Y, Iijima-Yamashita Y, Yoshida K, et al. Genetic abnormalities in myelodysplasia and secondary acute myeloid leukemia: impact on outcome of stem cell transplantation. Blood. 2017;129(17):2347–58.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Shinagawa K, Yanada M, Sakura T, Ueda Y, Sawa M, Miyatake J, et al. Tamibarotene as maintenance therapy for acute promyelocytic leukemia: results from a randomized controlled trial. J Clin Oncol. 2014;32(33):3729–35.

    Article  CAS  PubMed  Google Scholar 

  14. Gupta R, Soupir CP, Johari V, Hasserjian RP. Myelodysplastic syndrome with isolated deletion of chromosome 20q: an indolent disease with minimal morphological dysplasia and frequent thrombocytopenic presentation. Br J Haematol. 2007;139(2):265–8.

    Article  PubMed  Google Scholar 

  15. Steensma DP, Dewald GW, Hodnefield JM, Tefferi A, Hanson CA. Clonal cytogenetic abnormalities in bone marrow specimens without clear morphologic evidence of dysplasia: a form fruste of myelodysplasia? Leuk Res. 2003;27:235–42.

    Article  PubMed  Google Scholar 

  16. Sperling AS, Gibson CJ, Ebert BL. The genetics of myelodysplastic syndrome: from clonal haematopoiesis to secondary leukaemia. Nat Rev Cancer. 2017;17(1):5–19.

    Article  CAS  PubMed  Google Scholar 

  17. Bacher U, Haferlach T, Schnittger S, Zenger M, Meggendorfer M, Jeromin S, et al. Investigation of 305 patients with myelodysplastic syndromes and 20q deletion for associated cytogenetic and molecular genetic lesions and their prognostic impact. Br J Haematol. 2014;164(6):822–33.

    Article  CAS  PubMed  Google Scholar 

  18. Schiller GJ, Slack J, Hainsworth JD, Mason J, Saleh M, Rizzieri D, et al. Phase II multicenter study of arsenic trioxide in patients with myelodysplastic syndromes. J Clin Oncol. 2006;24(16):2456–64.

    Article  CAS  PubMed  Google Scholar 

  19. Vey N, Bosly A, Guerci A, Feremans W, Dombret H, Dreyfus F, et al. Arsenic trioxide in patients with myelodysplastic syndromes: a phase II multicenter study. J Clin Oncol. 2006;24(16):2465–71.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This work was partially supported by the Japan Society for the Promotion of Science (JSPS) KAKENHI Grant-in Aid for Young Scientists (B) (#17K16189). The advice of Dr. Kazutaka Kuriyama (Nagasaki Harbor Medical Center) on the morphological findings of this case was greatly appreciated.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hidehiro Itonaga.

Ethics declarations

Conflict of interest

The authors state that they have no conflict of interest (COI).

Ethical standards

This genetic analysis was approved by the Ethical Committees of Nagasaki University Hospital and Sasebo City General Hospital. Informed consent was obtained from the patient according to the Declaration of Helsinki.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Fujioka, M., Itonaga, H., Kato, T. et al. Persistent clonal cytogenetic abnormality with del(20q) from an initial diagnosis of acute promyelocytic leukemia. Int J Hematol 111, 311–316 (2020). https://doi.org/10.1007/s12185-019-02731-w

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12185-019-02731-w

Keywords

Navigation