Skip to main content
Log in

Effects of His-tag on Catalytic Activity and Enantioselectivity of Recombinant Transaminases

  • Published:
Applied Biochemistry and Biotechnology Aims and scope Submit manuscript

Abstract

Recombinant proteins were often expressed with His-tag to simplify the purification process. Among them, transaminase was mostly expressed with fusion tags and widely used in the production of numerous amino moieties. However, the existence of the His-tag has been reported to affect various properties of different recombinant enzymes, while the effect on transaminase was rarely studied. In this paper, we investigated the effect of His-tag on transaminase based on the various activities of 4-aminobutyrate-2-oxoglutarate transaminase (GabT) when it was expressed in vector pETDuet-1. We found that His-tag did not affect the enantioselectivity, but decreased the catalytic activity to different extents according to its existence and location. Native GabT maintained the highest catalytic activity; GabT with C-terminal His-tag showed slightly lower activity than native GabT but about 2.2-fold higher than GabT with N-terminal His-tag. Besides, other fusion tags like T7-tag and S-tag inserted between N-His-tag and GabT can relieve the decreasing effect of His-tag on GabT activity. Furthermore, whole cell catalytic activity of several transaminases was improved by deleting the N-terminal His-tag. This study provided a strategy for the efficient expression of recombinant transaminase with improved catalytic activity and might attract attention to the effect of His-tag on other enzymatic properties.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Slabu, I., Galman, J. L., Lloyd, R. C., & Turner, N. J. (2017). Discovery, engineering, and synthetic application of transaminase biocatalysts. ACS Catalysis, 7(12), 8263–8284.

    CAS  Google Scholar 

  2. Dawood, A. W. H., de Souza, R. O. M. A., & Bornscheuer, U. T. (2018). Asymmetric synthesis of chiral halogenated amines using amine transaminases. ChemCatChem, 10(5), 951–955.

    CAS  Google Scholar 

  3. Steffen-Munsberg, F., Vickers, C., Kohls, H., Land, H., Mallin, H., Nobili, A., Skalden, L., van den Bergh, T., Joosten, H. J., Berglund, P., Hohne, M., & Bornscheuer, U. T. (2015). Bioinformatic analysis of a PLP-dependent enzyme superfamily suitable for biocatalytic applications. Biotechnology Advances, 33(5), 566–604.

    CAS  PubMed  Google Scholar 

  4. Kelly, S. A., Pohle, S., Wharry, S., Mix, S., Allen, C. C. R., Moody, T. S., & Gilmore, B. F. (2017). Application of ω-transaminases in the pharmaceutical industry. Chemical Reviews, 118(1), 349–367.

    PubMed  Google Scholar 

  5. Guo, F., & Berglund, P. (2017). Transaminase biocatalysis: optimization and application. Green Chemistry, 19(2), 333–360.

    CAS  Google Scholar 

  6. Mathew, S., & Yun, H. (2012). ω-Transaminases for the production of optically pure amines and unnatural amino acids. ACS Catal, 2(6), 993–1001.

    CAS  Google Scholar 

  7. Fuchs, M., Farnberger, J. E., & Kroutil, W. (2015). The industrial age of biocatalytic transamination. European Journal of Organic Chemistry, 2015(32), 6965–6982.

    CAS  PubMed  PubMed Central  Google Scholar 

  8. Savile, C. K., Janey, J. M., Mundorff, E. C., Moore, J. C., Tam, S., Jarvis, W. R., Colbeck, J. C., Krebber, A., Fleitz, F. J., Brands, J., Devine, P. N., Huisman, G. W., & Hughes, G. J. (2010). Biocatalytic asymmetric synthesis of chiral amines from ketones applied to sitagliptin manufacture. Science, 329(5989), 305–309.

    CAS  PubMed  Google Scholar 

  9. Patil, M. D., Grogan, G., Bommarius, A., & Yun, H. (2018). Recent advances in ω-transaminase-mediated biocatalysis for the enantioselective synthesis of chiral Amines. Catalysts, 8(254), 1–25.

    Google Scholar 

  10. Höhne, M., & Bornscheuer, U. T. (2012). In K. Drauz, H. Gröger, & O. May (Eds.), Enzyme Catalysis in Organic Synthesis, Chapter 19: application of Transaminases. Weinheim: Wiley-VCH Verlag GmbH & Co. KGaA.

    Google Scholar 

  11. Deng, A., & Boxer, S. G. (2018). Structural insight into the photochemistry of split green fluorescent proteins: a unique role for a His-Tag. Journal of the American Chemical Society, 140(1), 375–381.

    CAS  PubMed  Google Scholar 

  12. Carson, M., Johnson, D. H., McDonald, H., Brouillette, C., & Delucas, L. J. (2007). His-tag impact on structure. Acta Crystallographica, Section D: Biological Crystallography, 63(3), 295–301.

    CAS  Google Scholar 

  13. Porath, J., Carlsson, J. A. N., Olsson, I., & Belfrage, G. (1975). Metal chelate affinity chromatography, a new approach to protein fractionation. Nature, 258(5536), 598–599.

    CAS  PubMed  Google Scholar 

  14. Structural Genomics, C., China Structural Genomics, C., Northeast Structural Genomics, C., Graslund, S., Nordlund, P., Weigelt, J., Hallberg, B. M., Bray, J., Gileadi, O., Knapp, S., Oppermann, U., Arrowsmith, C., Hui, R., Ming, J., dhe-Paganon, S., Park, H. W., Savchenko, A., Yee, A., Edwards, A., Vincentelli, R., Cambillau, C., Kim, R., Kim, S. H., Rao, Z., Shi, Y., Terwilliger, T. C., Kim, C. Y., Hung, L. W., Waldo, G. S., Peleg, Y., Albeck, S., Unger, T., Dym, O., Prilusky, J., Sussman, J. L., Stevens, R. C., Lesley, S. A., Wilson, I. A., Joachimiak, A., Collart, F., Dementieva, I., Donnelly, M. I., Eschenfeldt, W. H., Kim, Y., Stols, L., Wu, R., Zhou, M., Burley, S. K., Emtage, J. S., Sauder, J. M., Thompson, D., Bain, K., Luz, J., Gheyi, T., Zhang, F., Atwell, S., Almo, S. C., Bonanno, J. B., Fiser, A., Swaminathan, S., Studier, F. W., Chance, M. R., Sali, A., Acton, T. B., Xiao, R., Zhao, L., Ma, L. C., Hunt, J. F., Tong, L., Cunningham, K., Inouye, M., Anderson, S., Janjua, H., Shastry, R., Ho, C. K., Wang, D., Wang, H., Jiang, M., Montelione, G. T., Stuart, D. I., Owens, R. J., Daenke, S., Schutz, A., Heinemann, U., Yokoyama, S., Bussow, K., & Gunsalus, K. C. (2008). Protein production and purification. Nature Methods, 5(2), 135–146.

    Google Scholar 

  15. Booth, W. T., Schlachter, C. R., Pote, S., Ussin, N., Mank, N. J., Klapper, V., Offermann, L. R., Tang, C., Hurlburt, B. K., & Chruszcz, M. (2018). Impact of an N-terminal polyhistidine tag on protein thermal stability. ACS Omega, 3(1), 760–768.

    CAS  PubMed  PubMed Central  Google Scholar 

  16. Terpe, K. (2003). Overview of tag protein fusions: from molecular and biochemical fundamentals to commercial systems. Applied Microbiology and Biotechnology, 60(5), 523–533.

    CAS  PubMed  Google Scholar 

  17. Wood, D. W. (2014). New trends and affinity tag designs for recombinant protein purification. Current Opinion in Structural Biology, 26, 54–61.

    CAS  PubMed  Google Scholar 

  18. Esposito, D., & Chatterjee, D. K. (2006). Enhancement of soluble protein expression through the use of fusion tags. Current Opinion in Biotechnology, 17(4), 353–358.

    CAS  PubMed  Google Scholar 

  19. Araujo, A. P., Oliva, G., Henrique-Silva, F., Garratt, R. C., Caceres, O., & Beltramini, L. M. (2000). Influence of the histidine tail on the structure and activity of recombinant chlorocatechol 1,2-dioxygenase. Biochemical and Biophysical Research Communications, 272(2), 480–484.

    CAS  PubMed  Google Scholar 

  20. Bucher, M. H., Evdokimov, A. G., & Waugh, D. S. (2002). Differential effects of short affinity tags on the crystallization of Pyrococcus furiosus maltodextrin-binding protein. Acta Crystallographica, Section D: Biological Crystallography, 58(3), 392–397.

    PubMed  Google Scholar 

  21. Zhao, D., & Huang, Z. (2016). Effect of His-tag on expression, purification, and structure of Zinc finger protein, ZNF191(243-368). Bioinorganic Chemistry and Applications, 2016, 8206854.

    PubMed  PubMed Central  Google Scholar 

  22. Guo, F. M., Wu, J. P., Yang, L. R., & Xu, G. (2015). Soluble and functional expression of a recombinant enantioselective amidase from Klebsiella oxytoca KCTC 1686 in Escherichia coli and its biochemical characterization. Process Biochemistry, 50(8), 1264–1271.

    CAS  Google Scholar 

  23. Yeon, Y. J., Park, H. J., Park, H.-Y., & Yoo, Y. J. (2014). Effect of His-tag location on the catalytic activity of 3-hydroxybutyrate dehydrogenase. Biotechnology and Bioprocess Engineering, 19(5), 798–802.

    CAS  Google Scholar 

  24. Sabaty, M., Grosse, S., Adryanczyk, G., Boiry, S., Biaso, F., Arnoux, P., & Pignol, D. (2013). Detrimental effect of the 6 His C-terminal tag on YedY enzymatic activity and influence of the TAT signal sequence on YedY synthesis. BMC Biochemistry, 14(1), 28–39.

    CAS  PubMed  PubMed Central  Google Scholar 

  25. Panek, A., Pietrow, O., Filipkowski, P., & Synowiecki, J. (2013). Effects of the polyhistidine tag on kinetics and other properties of trehalose synthase from Deinococcus geothermalis. Acta Biochimica Polonica, 60(2), 163–166.

    CAS  PubMed  Google Scholar 

  26. Sayari, A., Mosbah, H., Verger, R., & Gargouri, Y. (2007). The N-terminal His-tag affects the enantioselectivity of staphylococcal lipases: a monolayer study. Journal of Colloid and Interface Science, 313(1), 261–267.

    CAS  PubMed  Google Scholar 

  27. Horchani, H., Ouertani, S., Gargouri, Y., & Sayari, A. (2009). The N-terminal His-tag and the recombination process affect the biochemical properties of Staphylococcus aureus lipase produced in Escherichia coli. Journal of Molecular Catalysis B: Enzymatic, 61(3-4), 194–201.

    CAS  Google Scholar 

  28. Mutti, F. G., Fuchs, C. S., Pressnitz, D., Turrini, N. G., Sattler, J. H., Lerchner, A., Skerra, A., & Kroutil, W. (2012). Amination of ketones by employing two new (S)-selective ω-transaminases and the His-tagged ω-TA from Vibrio fluvialis. European Journal of Organic Chemistry, 2012(5), 1003–1007.

    CAS  Google Scholar 

  29. Stekhanova, T. N., Rakitin, A. L., Mardanov, A. V., Bezsudnova, E. Y., & Popov, V. O. (2017). A Novel highly thermostable branched-chain amino acid aminotransferase from the crenarchaeon Vulcanisaeta moutnovskia. Enzyme and Microbial Technology, 96, 127–134.

    CAS  PubMed  Google Scholar 

  30. Gao, S., Su, Y., Zhao, L., Li, G., & Zheng, G. (2017). Characterization of a (R)-selective amine transaminase from Fusarium oxysporum. Process Biochemistry, 63, 130–136.

    CAS  Google Scholar 

  31. Mathew, S., Nadarajan, S. P., Chung, T., Park, H. H., & Yun, H. (2016). Biochemical characterization of thermostable omega-transaminase from Sphaerobacter thermophilus and its application for producing aromatic beta- and gamma-amino acids. Enzyme and Microbial Technology, 87-88, 52–60.

    CAS  PubMed  Google Scholar 

  32. Chen, Y., Yi, D., Jiang, S., & Wei, D. (2016). Identification of novel thermostable taurine-pyruvate transaminase from Geobacillus thermodenitrificans for chiral amine synthesis. Applied Microbiology and Biotechnology, 100(7), 3101–3111.

    CAS  PubMed  Google Scholar 

  33. Zou, L., Zhao, H., Wang, D., Wang, M., Zhang, C., & Xiao, F. (2014). Expression and purification of a functional recombinant aspartate aminotransferase (AST) from Escherichia coli. Journal of Microbiology and Biotechnology, 24(7), 998–1003.

    CAS  PubMed  Google Scholar 

  34. Meng, L. J., Liu, Y. Y., Zhou, H. S., Yin, X. J., Wu, J. P., Wu, M. B., Xu, G., & Yang, L. R. (2018). Driving transamination irreversible by decomposing byproduct α-ketoglutarate into ethylene using ethylene-forming enzyme. Catalysis Letters, 148(11), 3309–3314.

    CAS  Google Scholar 

  35. Nobuto Minowa, N. N., Masaaki Itomi. (2010) Method for producing phosphorus-containing alpha-keto acid. US Patent 0,063,313.

  36. Yin, X., Wu, J., & Yang, L. (2018). Efficient reductive amination process for enantioselective synthesis of L-phosphinothricin applying engineered glutamate dehydrogenase. Applied Microbiology and Biotechnology, 102(10), 4425–4433.

    CAS  PubMed  Google Scholar 

  37. Zheng, L., Baumann, U., & Reymond, J. L. (2004). An efficient one-step site-directed and site-saturation mutagenesis protocol. Nucleic Acids Research, 32(14), e115.

    PubMed  PubMed Central  Google Scholar 

  38. Vivek, K., Mutalik, J. C. G., Cambray, G., Lam, C., Christoffersen, M. J., Quynh-Anh Mai, A. B. T., Paull, M., Keasling, J. D., Arkin, A. P., & Endy, D. (2013). Precise and reliable gene expression via standard transcription and translation initiation elements. Nature Methods, 10(4), 354–369.

    Google Scholar 

  39. Espah Borujeni, A., Channarasappa, A. S., & Salis, H. M. (2014). Translation rate is controlled by coupled trade-offs between site accessibility, selective RNA unfolding and sliding at upstream standby sites. Nucleic Acids Research, 42(4), 2646–2659.

    CAS  PubMed  Google Scholar 

  40. Espah Borujeni, A., & Salis, H. M. (2016). Translation initiation is controlled by RNA folding kinetics via a riobosome drafting mechanism. Journal of the American Chemical Society, 138, 7016–7023.

    CAS  PubMed  Google Scholar 

  41. Cheong, D. E., Ko, K. C., Han, Y., Jeon, H. G., Sung, B. H., Kim, G. J., Choi, J. H., & Song, J. J. (2015). Enhancing functional expression of heterologous proteins through random substitution of genetic codes in the 5' coding region. Biotechnology and Bioengineering, 112(4), 822–826.

    CAS  PubMed  Google Scholar 

  42. Liu, W., Peterson, P. E., Langston, J. A., Jin, X., Zhou, X., Fisher, A. J., & Toney, M. D. (2005). Kinetic and crystallographic analysis of active site mutants of Escherichia coli gamma-aminobutyrate aminotransferase. Biochemistry, 44(8), 2982–2992.

    CAS  PubMed  Google Scholar 

  43. Liu, W., Peterson, P. E., Carter, R. J., Zhou, X., Langston, J. A., Fisher, A. J., & Toney, M. D. (2004). Crystal structures of unbound and aminooxyacetate-bound Escherichia coli gamma-aminobutyrate aminotransferase. Biochemistry, 43(34), 10896–10905.

    CAS  PubMed  Google Scholar 

  44. Wilding, M., Scott, C., & Warden, A. C. (2018). Computer-guided surface engineering for enzyme improvement. Scientific Reports, 8(1), 11998.

    PubMed  PubMed Central  Google Scholar 

  45. Yu, X., Wang, X., & Engel, P. C. (2014). The specificity and kinetic mechanism of branched-chain amino acid aminotransferase from Escherichia coli studied with a new improved coupled assay procedure and the enzyme's potential for biocatalysis. FEBS Journal, 281(1), 391–400.

    CAS  PubMed  Google Scholar 

  46. Slabu, I., Galman, J. L., Weise, N. J., Lloyd, R. C., & Turner, N. J. (2016). Putrescine transaminases for the synthesis of saturated nitrogen heterocycles from polyamines. ChemCatChem, 8(6), 1038–1042.

    CAS  Google Scholar 

  47. Barber, J. E., Damry, A. M., Calderini, G. F., Walton, C. J., & Chica, R. A. (2014). Continuous colorimetric screening assay for detection of D-amino acid aminotransferase mutants displaying altered substrate specificity. Analytical Biochemistry, 463, 23–30.

    CAS  PubMed  Google Scholar 

  48. Kaulmann, U., Smithies, K., Smith, M. E. B., Hailes, H. C., & Ward, J. M. (2007). Substrate spectrum of ω-transaminase from Chromobacterium violaceum DSM30191 and its potential for biocatalysis. Enzyme and Microbial Technology, 41(5), 628–637.

    CAS  Google Scholar 

  49. Park, E. S., & Shin, J. S. (2013). omega-Transaminase from Ochrobactrum anthropi is devoid of substrate and product inhibitions. Applied and Environmental Microbiology, 79(13), 4141–4144.

    CAS  PubMed  PubMed Central  Google Scholar 

Download references

Funding

This work was supported by the National Natural Science Foundation of China (No. 21476199).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Lirong Yang.

Ethics declarations

Conflict of Interest

The authors declare that they have no conflict of interest.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

ESM 1

(DOC 109 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Meng, L., Liu, Y., Yin, X. et al. Effects of His-tag on Catalytic Activity and Enantioselectivity of Recombinant Transaminases. Appl Biochem Biotechnol 190, 880–895 (2020). https://doi.org/10.1007/s12010-019-03117-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12010-019-03117-8

Keywords

Navigation