Skip to main content

Advertisement

Log in

Niche and Neutrality Work Differently in Microbial Communities in Fluidic and Non-fluidic Ecosystems

  • Microbiology of Aquatic Systems
  • Published:
Microbial Ecology Aims and scope Submit manuscript

Abstract

This data-intensive study investigated the delicate balance of niche and neutrality underlying microbial communities in freshwater ecosystems through comprehensive application of high-throughput sequencing, species abundance distribution (SAD), and the neutral community model (NCM), combined with species diversity and phylogenetic measures, which unite the traditional and microbial ecology. On the genus level, 45.10% and 41.18% of the water samples could be explained by the log-normal and Volkov model respectively, among which 31.37% could fit both models. Meanwhile, 55.56% of the sediment samples could be depicted by the log-normal model, and Volkov-fitted samples comprised only 13.33%. Besides, operational taxonomic units (OTUs) from water samples fit Sloan’s neutral model significantly better than those in sediment. Therefore, it was concluded that deterministic processes played a great role in both water and sediment ecosystems, whereas neutrality was much more involved in water assemblages than in non-fluidic sediment ecosystems. Secondly, log-normal fitted samples had lower phylogenetic species variability (PSV) than Volkov-fitted ones, indicating that niche-based communities were more phylogenetically clustered than neutrally assembled counterparts. Additionally, further testing showed that the relative richness of rare species was vital to SAD modeling, either niche-based or neutral, and communities containing fewer rare species were more easily captured by theoretical SAD models.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Helmus MR, Bland TJ, Williams CK, Ives AR (2007) Phylogenetic measures of biodiversity. Am Nat 169:E68–E83

    Article  Google Scholar 

  2. Helmus MR, Keller WB, Paterson MJ, Yan ND, Cannon CH, Rusak JA (2010) Communities contain closely related species during ecosystem disturbance. Ecol Lett 13:162–174. https://doi.org/10.1111/j.1461-0248.2009.01411.x

    Article  PubMed  Google Scholar 

  3. Magurran AE, McGill BJ (2011) Biological diversity: frontiers in measurement and assessment. Oxford University Press, New York

    Google Scholar 

  4. Sæther BE, Engen S, Grøtan V (2013) Species diversity and community similarity in fluctuating environments: parametric approaches using species abundance distribution. J Anim Ecol 82:721–738. https://doi.org/10.1111/1365-2656.12068

    Article  PubMed  Google Scholar 

  5. Motonura I (1932) A statistical treatment of associations. Jpn J Ecol 44:379–383 (in Japanese)

    Google Scholar 

  6. Hubbell SP (2001) The unified neutral theory of biodiversity and biogeography. Princeton University Press, Princeton

    Google Scholar 

  7. Dolédec S, Chessel D, Gimaret-Carpentier C (2000) Niche separation in community analysis: a new method. Ecology 81:2914–2927. https://doi.org/10.1890/0012-9658(2000)081[2914:NSICAA]2.0.CO;2

    Article  Google Scholar 

  8. Sugihara G, Bersier LF, Southwood TRE, Pimm ST, May RM (2003) Predicted correspondence between species abundances and dendrograms of niche similarities. PNAS 100:5246–5251. https://doi.org/10.1073/pnas.0831096100

    Article  CAS  PubMed  Google Scholar 

  9. Bell G (2001) Neutral macroecology. Science 293:2413–2418. https://doi.org/10.1126/science.293.5539.2413

    Article  CAS  PubMed  Google Scholar 

  10. Rosindell J, Hubbell SP, He F, Harmon LJ, Etienne RS (2012) The case for ecological neutral theory. Trends in Ecology & Evolution 27:203–208. https://doi.org/10.1016/j.tree.2012.01.004

    Article  Google Scholar 

  11. Sloan WT, Lunn M, Woodcock S, Head IM, Nee S, Curtis TP (2006) Quantifying the roles of immigration and chance in shaping prokaryote community structure. Environ Microbiol 8:732–740. https://doi.org/10.1111/j.1462-2920.2005.00956.x

    Article  PubMed  Google Scholar 

  12. Sloan WT, Woodcock S, Lunn M, Head IM, Curtis TP (2007) Modeling taxa-abundance distributions in microbial communities using environmental sequence data. Microb Ecol 53:443–455. https://doi.org/10.1007/s00248-006-9141-x

    Article  PubMed  Google Scholar 

  13. Ren G, Xu X, Qu J, Zhu L, Wang T (2016) Evaluation of microbial population dynamics in the co-composting of cow manure and rice straw using high throughput sequencing analysis. World J Microbiol Biotechnol 32:101

    Article  Google Scholar 

  14. MacArthur RH (1957) On the relative abundance of bird species. PNAS 43:293–295

    Article  CAS  Google Scholar 

  15. Frontier S (1985) Diversity and structure in aquatic ecosystems. Oceanogr Mar Biol 23:253–312

    Google Scholar 

  16. Whittaker RH (1965) Dominance and diversity in land plant communities. Science 147:250–260. https://doi.org/10.1126/science.147.3655.250

    Article  CAS  PubMed  Google Scholar 

  17. Preston FW (1948) The commonness and rarity of species. Ecology 29:254–283

    Article  Google Scholar 

  18. Preston FW (1962) The canonical distribution of commonness and rarity. Ecology 43:410–432

    Article  Google Scholar 

  19. Fisher RA, Corbet AS, Williams CB (1943) The relation between the number of species and the number of individuals in a random sample of an animal population. J Anim Ecol 12:42–58

    Article  Google Scholar 

  20. Volkov I, Banavar JR, Hubbell SP, Maritan A (2003) Neutral theory and relative species abundance in ecology. Nature 424:1035–1037. https://doi.org/10.1038/nature01883

    Article  CAS  PubMed  Google Scholar 

  21. Connoly SR, MacNeil MA, Caley MJ et al (2014) Commonness and rarity in the marine biosphere. PNAS. https://doi.org/10.1073/pnas.1406664111

  22. Burns AR, Stephens WZ, Stagaman K, Wong S, Rawl JF, Guillemin K, Bohannan BJM (2016) Contribution of neutral processes to the assembly of gut microbial communities in the zebrafish over host development. ISME J 10:655–664. https://doi.org/10.1038/ismej.2015.142

  23. Burns JH, Strauss SY (2011) More closely related species are more ecologically similar in an experimental test. Proc Natl Acad Sci U S A 108:5302–5307. https://doi.org/10.1073/pnas.1013003108

    Article  PubMed  PubMed Central  Google Scholar 

  24. Pedrós-Alió C (2012) The rare bacterial biosphere. Annu Rev Mar Sci 4:449–466. https://doi.org/10.1146/annurev-marine-120710-100948

    Article  Google Scholar 

  25. Logares R, Audic S, Bass D, Bittner L, Boutte C, Christen R, Claverie JM, Decelle J, Dolan JR, Dunthorn M, Edvardsen B, Gobet A, Kooistra WHCF, Mahé F, Not F, Ogata H, Pawlowski J, Pernice MC, Romac S, Shalchian-Tabrizi K, Simon N, Stoeck T, Santini S, Siano R, Wincker P, Zingone A, Richards TA, de Vargas C, Massana R (2014) Patterns of rare and abundant marine microbial eukaryotes. Curr Biol 24:813–821. https://doi.org/10.1016/j.cub.2014.02.050

    Article  CAS  PubMed  Google Scholar 

  26. Savio D, Sinclair L, Ijaz UZ, Parajka J, Reischer GH, Stadler P, Blaschke AP, Blöschl G, Mach RL, Kirschner AKT, Farnleitner AH, Eiler A (2015) Bacterial diversity along a 2600 km river continuum. Environ Microbiol 17:4994–5007. https://doi.org/10.1111/1462-2920.12886

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Chisholm RA, Pacala SW (2011) Theory predicts a rapid transition from niche-structured to neutral biodiversity patterns across a speciation-rate gradient. Theor Ecol 4:195–200. https://doi.org/10.1007/s12080-011-0113-5

    Article  Google Scholar 

  28. Matthews TJ, Whittaker RJ (2014) Neutral theory and the species abundance distribution: recent developments and prospects for unifying niche and neutral perspectives. Ecology and Evolution 4:2263–2277. https://doi.org/10.1002/ece3.1092

    Article  PubMed  PubMed Central  Google Scholar 

  29. Warton DI, Blanchet FG, O’hara RB, Ovaskainen O, Taskinen S, Walker SC, Hui FKC (2015) So many variables: joint modeling in community ecology. Trends in Ecology & Evolution 30:766–779. https://doi.org/10.1016/j.tree.2015.09.007

    Article  Google Scholar 

  30. Zhou J, Deng Y, Zhang P, Xue K, Liang Y, van Nostrand JD, Yang Y, He Z, Wu L, Stahl DA, Hazen TC, Tiedje JM, Arkin AP (2013) Stochasticity, succession, and environmental perturbations in a fluidic ecosystem. PNAS 111:E836–E845. https://doi.org/10.1073/pnas.1324044111

    Article  CAS  Google Scholar 

  31. Dini-Andreote F, Stegen JC, Elsas JD, Salles JF (2015) Disentangling mechanisms that mediate the balance between stochastic and deterministic processes in microbial succession. PNAS 112:E1326–E1332. https://doi.org/10.1073/pnas.1414261112

    Article  CAS  PubMed  Google Scholar 

  32. Rosindell J, Hubbell SP, Etienne RS (2011) The unified neutral theory of biodiversity and biogeography at age ten. Trends in Ecology & Evolution 26:340–348. https://doi.org/10.1016/j.tree.2011.03.024

    Article  Google Scholar 

  33. Vellend M (2016) The theory of ecological communities (MPB-57). Princeton University Press, Princeton

    Book  Google Scholar 

  34. Guariento RD, Caliman A (2017) A minimum stochastic model evaluating the interplay between population density and drift for species coexistence. Acta Oecol 79:62–69. https://doi.org/10.1016/j.actao.2017.01.004

    Article  Google Scholar 

  35. Fillinger L, Zhou Y, Kellermann C, Griebler C (2019) Non-random processes determine the colonization of groundwater sediments by microbial communities in a pristine porous aquifer. Environ Microbiol 21:327–342. https://doi.org/10.1111/1462-2920.14463

    Article  CAS  PubMed  Google Scholar 

  36. Allan JD, Castillo MM (2007) An introduction to fluvial ecosystems. In: Allan JD, Castillo MM (eds) Stream ecology: structure and function of running waters, 2nd edn. Springer, Dordrecht, pp 1–12

    Chapter  Google Scholar 

  37. Stokes CJ, Archer SR (2010) Niche differentiation and neutral theory: an integrated perspective on shrub assemblages in a parkland savanna. Ecology 91:1152–1162. https://doi.org/10.1890/08-1105.1

    Article  CAS  PubMed  Google Scholar 

  38. Graham EB, Crump AR, Resch CT, Fansler S, Arntzen E, Kennedy DW, Fredrickson JK, Stegen JC (2016) Coupling spatiotemporal community assembly processes to changes in microbial metabolism. Front Microbiol 7:1949. https://doi.org/10.3389/fmicb.2016.01949

    Article  PubMed  PubMed Central  Google Scholar 

  39. Stegen JC, Fredrickson JK, Wilkins MJ et al (2016) Groundwater-surface water mixing shifts ecological assembly processes and stimulates organic carbon turnover. Nat Commun 7:11237. https://doi.org/10.1038/ncomms11237

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Graham EB, Stegen CJ (2017) Dispersal-based microbial community assembly decreases biogeochemical function. Processes 5:65. https://doi.org/10.3390/pr5040065

    Article  Google Scholar 

  41. Li L (2015) Research on neutral theory of human microbial community. A master dissertation at the Kunming University of Science and technology. (in Chinese)

  42. Dunstan PK, Foster SD (2011) RAD biodiversity: prediction of rank abundance distributions from deep water benthic assemblages. Ecography. 34:798–806

    Article  Google Scholar 

  43. Yen JDL, Thomson JR, Nally RM (2013) Is there an ecological basis for species abundance distributions? Oecologia. 171:517–525

    Article  Google Scholar 

Download references

Acknowledgments

We harbor sincere gratitude to Huading Wang, Bingbing Yu, and Zijian Huang for their laborious assistance in field sampling.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Kang Ning or Yunjun Yan.

Ethics declarations

Conflict of Interest

The authors declare that they have no conflict of interest.

Electronic supplementary material

ESM 1

(DOCX 24 kb)

ESM 2

(PDF 669 kb)

ESM 3

(PDF 1366 kb)

ESM 4

(XLSX 27 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, L., Han, M., Li, X. et al. Niche and Neutrality Work Differently in Microbial Communities in Fluidic and Non-fluidic Ecosystems. Microb Ecol 79, 527–538 (2020). https://doi.org/10.1007/s00248-019-01439-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00248-019-01439-y

Keywords

Navigation