Skip to main content

Advertisement

Log in

New insight on the correlation of metabolic status on 18F-FDG PET/CT with immune marker expression in patients with non-small cell lung cancer

  • Original Article
  • Published:
European Journal of Nuclear Medicine and Molecular Imaging Aims and scope Submit manuscript

Abstract

Background

Metabolic information obtained through 18F-flurodeoxyglucose positron emission tomography/computed tomography (18F-FDG PET/CT) is used to evaluate malignancy by calculating the glucose uptake rate, and these parameters play important roles in determining the prognosis of non-small cell lung cancer (NSCLC). The expression of immune-related markers in tumor tissue reflects the immune status in the tumor microenvironment. However, there is lack of reports on the association between metabolic variables and intra-tumor immune markers. Herein, we investigate the correlation between metabolic status on 18F-FDG PET/CT and intra-tumor immunomarkers’ expression in NSCLC patients.

Methods

From April 2008 to August 2014, 763 patients were enrolled in the analysis to investigate the role of maximum standardized uptake value (SUVmax) in lung cancer. One hundred twenty-two tumor specimens were analyzed by immunohistochemistry (IHC) to intra-tumor immune cells and programmed death protein ligand 1(PD-L1) expression on tumor cells. The correlation between metabolic variables and the expression of tissue immune markers were analyzed.

Results

SUVmax values have significant variations in different epidermal growth factor receptor (EGFR) statuses (wild type vs mutant type), high/low neutrophil-to-lymphocyte ratio (NLR) groups, and high/low platelets-to-lymphocyte ratio (PLR) groups (p < 0.001, p < 0.001, p = 0.003, respectively). SUVmax was an independent prognostic factor in lung cancer patients (p = 0.013). IHC demonstrated a statistically significant correlation between SUVmax and the expression of CD8 tumor-infiltrating lymphocytes (p = 0.015), CD163 tumor-associated macrophages (TAMs) (p = 0.003), and Foxp3-regulatory T cells (Tregs) (p = 0.004), as well as PD-1 and PD-L1 (p = 0.003 and p = 0.012, respectively). With respect to patient outcomes, disease stage, BMI, SUVmax, metabolic tumor volume (MTV), TLG (tumor lesion glycolysis), CD163-TAMs, CD11c-dendritic cells (DCs), PD-L1, and Tregs showed a statistically significant correlation with progression-free survival (PFS) (p < 0.001, 0.023, < 0.001, 0.007, 0.005, 0.004, 0.008, 0.048, and 0.014, respectively), and disease stage, SUVmax, MTV, TLG, CD163-TAMs, CD11c-DCs, and PD-L1 showed a statistically significant correlation with overall survival (OS) (p < 0.001, < 0.001, 0.014, 0.012, < 0.001, 0.001, and < 0.001, respectively).

Conclusion

This study revealed an association between metabolic variable and immune cell expression in the tumor microenvironment and suggests that SUVmax on 18F-FDG PET/CT could be a potential predictor for selecting candidates for immunotherapy.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

Abbreviations

NSCLC:

Non-small cell lung cancer

18F-FDG PET/CT:

18F-Flurodeoxyglucose positron emission tomography/computed tomography

TILs:

Tumor-infiltrating lymphocytes

TAMs:

Tumor-associated macrophages

Tregs:

Regulatory T cells

DCs:

Dendritic cells

PD-1:

Programmed death protein 1

IHC:

Immunohistochemistry

SUV:

Standardized uptake value

PFS:

Progression-free survival

OS:

Overall survival

SCC:

Squamous cell carcinoma

ADC:

Adenocarcinoma

NLR:

Neutrophil-to-lymphocyte ratio

PLR:

Platelets-to-lymphocyte ratio

BMI:

Body mass index

References

  1. Saintigny P, Burger JA. Recent advances in non-small cell lung cancer biology and clinical management. Discov Med. 2012;13:287–97.

    PubMed  Google Scholar 

  2. Ashamalla H, Rafla S, Parikh K, Mokhtar B, Goswami G, Kambam S, et al. The contribution of integrated PET/CT to the evolving definition of treatment volumes in radiation treatment planning in lung cancer. Int J Radiat Oncol Biol Phys. 2005;63:1016–23. https://doi.org/10.1016/j.ijrobp.2005.04.021.

    Article  PubMed  Google Scholar 

  3. Mac MM, Hicks RJ. The role of positron emission tomography/computed tomography in radiation therapy planning for patients with lung cancer. Semin Nucl Med. 2012;42:308–19. https://doi.org/10.1053/j.semnuclmed.2012.04.003.

    Article  Google Scholar 

  4. Opoka L, Szolkowska M, Podgajny Z, Kunikowska J, Baranska I, Blasinska-Przerwa K, et al. Assessment of recurrence of non-small cell lung cancer after therapy using CT and Integrated PET/CT. Pneumonol Alergol Pol. 2013;81:214–20.

    PubMed  Google Scholar 

  5. Palsson-McDermott EM, O’Neill LA. The Warburg effect then and now: from cancer to inflammatory diseases. Bioessays. 2013;35:965–73. https://doi.org/10.1002/bies.201300084.

    Article  CAS  PubMed  Google Scholar 

  6. Appelberg R, Moreira D, Barreira-Silva P, Borges M, Silva L, Dinis-Oliveira RJ, et al. The Warburg effect in mycobacterial granulomas is dependent on the recruitment and activation of macrophages by interferon-gamma. Immunology. 2015;145:498–507. https://doi.org/10.1111/imm.12464.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Gajewski TF, Schreiber H, Fu YX. Innate and adaptive immune cells in the tumor microenvironment. Nat Immunol. 2013;14:1014–22. https://doi.org/10.1038/ni.2703.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Hanahan D, Coussens LM. Accessories to the crime: functions of cells recruited to the tumor microenvironment. Cancer Cell. 2012;21:309–22. https://doi.org/10.1016/j.ccr.2012.02.022.

    Article  CAS  PubMed  Google Scholar 

  9. Fridman WH, Pages F, Sautes-Fridman C, Galon J. The immune contexture in human tumours: impact on clinical outcome. Nat Rev Cancer. 2012;12:298–306. https://doi.org/10.1038/nrc3245.

    Article  CAS  PubMed  Google Scholar 

  10. Dunn GP, Old LJ, Schreiber RD. The three Es of cancer immunoediting. Annu Rev Immunol. 2004;22:329–60. https://doi.org/10.1146/annurev.immunol.22.012703.104803.

    Article  CAS  PubMed  Google Scholar 

  11. Borghaei H, Paz-Ares L, Horn L, Spigel DR, Steins M, Ready NE, et al. Nivolumab versus docetaxel in advanced nonsquamous non-small-cell lung cancer. N Engl J Med. 2015;373:1627–39. https://doi.org/10.1056/NEJMoa1507643.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Herbst RS, Baas P, Kim DW, Felip E, Perez-Gracia JL, Han JY, et al. Pembrolizumab versus docetaxel for previously treated, PD-L1-positive, advanced non-small-cell lung cancer (KEYNOTE-010): a randomised controlled trial. Lancet. 2016;387:1540–50. https://doi.org/10.1016/S0140-6736(15)01281-7.

    Article  CAS  PubMed  Google Scholar 

  13. Fehrenbacher L, Spira A, Ballinger M, Kowanetz M, Vansteenkiste J, Mazieres J, et al. Atezolizumab versus docetaxel for patients with previously treated non-small-cell lung cancer (POPLAR): a multicentre, open-label, phase 2 randomised controlled trial. Lancet. 2016;387:1837–46. https://doi.org/10.1016/S0140-6736(16)00587-0.

    Article  CAS  PubMed  Google Scholar 

  14. Chang CH, Qiu J, O’Sullivan D, Buck MD, Noguchi T, Curtis JD, et al. Metabolic competition in the tumor microenvironment is a driver of cancer progression. Cell. 2015;162:1229–41. https://doi.org/10.1016/j.cell.2015.08.016.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Pearce EL, Pearce EJ. Metabolic pathways in immune cell activation and quiescence. Immunity. 2013;38:633–43. https://doi.org/10.1016/j.immuni.2013.04.005.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Na F, Wang J, Li C, Deng L, Xue J, Lu Y. Primary tumor standardized uptake value measured on F18-Fluorodeoxyglucose positron emission tomography is of prediction value for survival and local control in non-small-cell lung cancer receiving radiotherapy: meta-analysis. J Thorac Oncol. 2014;9:834–42. https://doi.org/10.1097/JTO.0000000000000185.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Nair VS, Krupitskaya Y, Gould MK. Positron emission tomography 18F-fluorodeoxyglucose uptake and prognosis in patients with surgically treated, stage I non-small cell lung cancer: a systematic review. J Thorac Oncol. 2009;4:1473–9. https://doi.org/10.1097/JTO.0b013e3181bccbc6.

    Article  PubMed  Google Scholar 

  18. Paesmans M, Berghmans T, Dusart M, Garcia C, Hossein-Foucher C, Lafitte JJ, et al. Primary tumor standardized uptake value measured on fluorodeoxyglucose positron emission tomography is of prognostic value for survival in non-small cell lung cancer: update of a systematic review and meta-analysis by the European Lung Cancer Working Party for the International Association for the Study of Lung Cancer Staging Project. J Thorac Oncol. 2010;5:612–9. https://doi.org/10.1097/JTO.0b013e3181d0a4f5.

    Article  PubMed  Google Scholar 

  19. Mantovani A, Allavena P, Sica A, Balkwill F. Cancer-related inflammation. Nature. 2008;454:436–44. https://doi.org/10.1038/nature07205.

    Article  CAS  Google Scholar 

  20. Templeton AJ, McNamara MG, Seruga B, Vera-Badillo FE, Aneja P, Ocana A, et al. Prognostic role of neutrophil-to-lymphocyte ratio in solid tumors: a systematic review and meta-analysis. J Natl Cancer Inst. 2014;106:u124. https://doi.org/10.1093/jnci/dju124.

    Article  CAS  Google Scholar 

  21. Liu H, Wu Y, Wang Z, Yao Y, Chen F, Zhang H, et al. Pretreatment platelet-to-lymphocyte ratio (PLR) as a predictor of response to first-line platinum-based chemotherapy and prognosis for patients with non-small cell lung cancer. J Thorac Dis. 2013;5:783–9. https://doi.org/10.3978/j.issn.2072-1439.2013.12.34.

    Article  PubMed  PubMed Central  Google Scholar 

  22. Kaya V, Yildirim M, Demirpence O, Yildiz M, Yalcin AY. Prognostic significance of basic laboratory methods in non- small-cell-lung cancer. Asian Pac J Cancer Prev. 2013;14:5473–6.

    Article  Google Scholar 

  23. Colotta F, Allavena P, Sica A, Garlanda C, Mantovani A. Cancer-related inflammation, the seventh hallmark of cancer: links to genetic instability. Carcinogenesis. 2009;30:1073–81. https://doi.org/10.1093/carcin/bgp127.

    Article  CAS  PubMed  Google Scholar 

  24. Balkwill F, Mantovani A. Inflammation and cancer: back to Virchow? Lancet. 2001;357:539–45. https://doi.org/10.1016/S0140-6736(00)04046-0.

    Article  CAS  PubMed  Google Scholar 

  25. Elkord E, Alcantar-Orozco EM, Dovedi SJ, Tran DQ, Hawkins RE, Gilham DE. T regulatory cells in cancer: recent advances and therapeutic potential. Expert Opin Biol Ther. 2010;10:1573–86. https://doi.org/10.1517/14712598.2010.529126.

    Article  CAS  PubMed  Google Scholar 

  26. Na II, Byun BH, Kim KM, Cheon GJ, Choe DH, Koh JS, et al. 18F-FDG uptake and EGFR mutations in patients with non-small cell lung cancer: a single-institution retrospective analysis. Lung Cancer. 2010;67:76–80. https://doi.org/10.1016/j.lungcan.2009.03.010.

    Article  PubMed  Google Scholar 

  27. Mak RH, Digumarthy SR, Muzikansky A, Engelman JA, Shepard JA, Choi NC, et al. Role of 18F-fluorodeoxyglucose positron emission tomography in predicting epidermal growth factor receptor mutations in non-small cell lung cancer. Oncologist. 2011;16:319–26. https://doi.org/10.1634/theoncologist.2010-0300.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Higashi K, Ueda Y, Sakurai A, Mingwang X, Xu L, Murakami M, et al. Correlation of Glut-1 glucose transporter expression with [18F]FDG uptake in non-small cell lung cancer. Eur J Nucl Med. 2000;27(12):1778–85. https://doi.org/10.1007/s002590000367.

    Article  CAS  PubMed  Google Scholar 

  29. Wei T, Zhang J, Qin Y, Wu Y, Zhu L, Lu L, et al. Increased expression of immunosuppressive molecules on intratumoral and circulating regulatory T cells in non-small-cell lung cancer patients. Am J Cancer Res. 2015;5:2190–201.

    CAS  PubMed  PubMed Central  Google Scholar 

  30. Jayaraman P, Jacques MK, Zhu C, Steblenko KM, Stowell BL, Madi A, et al. TIM3 mediates t cell exhaustion during Mycobacterium tuberculosis infection. PLoS Pathog. 2016;12:e1005490. https://doi.org/10.1371/journal.ppat.1005490.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Liang B, Workman C, Lee J, Chew C, Dale BM, Colonna L, et al. Regulatory T cells inhibit dendritic cells by lymphocyte activation gene-3 engagement of MHC class II. J Immunol. 2008;180:5916–26.

    Article  CAS  Google Scholar 

  32. Rabe H, Nordstrom I, Andersson K, Lundell AC, Rudin A. Staphylococcus aureus convert neonatal conventional CD4(+) T cells into FOXP3(+) CD25(+) CD127(low) T cells via the PD-1/PD-L1 axis. Immunology. 2014;141:467–81. https://doi.org/10.1111/imm.12209.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Hasegawa T, Suzuki H, Yamaura T, Muto S, Okabe N, Osugi J, et al. Prognostic value of peripheral and local forkhead box P3+ regulatory T cells in patients with non-small-cell lung cancer. Mol Clin Oncol. 2014;2:685–94. https://doi.org/10.3892/mco.2014.299.

    Article  PubMed  PubMed Central  Google Scholar 

  34. Bille A, Okiror L, Skanjeti A, Errico L, Arena V, Penna D, et al. The prognostic significance of maximum standardized uptake value of primary tumor in surgically treated non-small-cell lung cancer patients: analysis of 413 cases. Clin Lung Cancer. 2013;14:149–56. https://doi.org/10.1016/j.cllc.2012.04.007.

    Article  PubMed  Google Scholar 

  35. Lopci E, Toschi L, Grizzi F, Rahal D, Olivari L, Castino GF, et al. Correlation of metabolic information on FDG-PET with tissue expression of immune markers in patients with non-small cell lung cancer (NSCLC) who are candidates for upfront surgery. Eur J Nucl Med Mol Imaging. 2016;43:1954–61. https://doi.org/10.1007/s00259-016-3425-2.

    Article  CAS  PubMed  Google Scholar 

  36. Fox CJ, Hammerman PS, Thompson CB. Fuel feeds function: energy metabolism and the T-cell response. Nat Rev Immunol. 2005;5:844–52. https://doi.org/10.1038/nri1710.

    Article  CAS  PubMed  Google Scholar 

  37. Jones RG, Thompson CB. Revving the engine: signal transduction fuels T cell activation. Immunity. 2007;27:173–8. https://doi.org/10.1016/j.immuni.2007.07.008.

    Article  CAS  PubMed  Google Scholar 

  38. van Bruggen R, Koker MY, Jansen M, van Houdt M, Roos D, Kuijpers TW, et al. Human NLRP3 inflammasome activation is Nox1–4 independent. Blood. 2010;115:5398–400. https://doi.org/10.1182/blood-2009-10-250803.

    Article  CAS  PubMed  Google Scholar 

  39. Zou W, Chen L. Inhibitory B7-family molecules in the tumour microenvironment. Nat Rev Immunol. 2008;8:467–77. https://doi.org/10.1038/nri2326.

    Article  CAS  PubMed  Google Scholar 

  40. Curiel TJ, Wei S, Dong H, Alvarez X, Cheng P, Mottram P, et al. Blockade of B7-H1 improves myeloid dendritic cell-mediated antitumor immunity. Nat Med. 2003;9:562–7. https://doi.org/10.1038/nm863.

    Article  CAS  PubMed  Google Scholar 

  41. Freeman GJ, Long AJ, Iwai Y, Bourque K, Chernova T, Nishimura H, et al. Engagement of the PD-1 immunoinhibitory receptor by a novel B7 family member leads to negative regulation of lymphocyte activation. J Exp Med. 2000;192:1027–34.

    Article  CAS  Google Scholar 

  42. Laplante M, Sabatini DM. mTOR signaling in growth control and disease. Cell. 2012;149:274–93. https://doi.org/10.1016/j.cell.2012.03.017.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Spranger S, Koblish HK, Horton B, Scherle PA, Newton R, Gajewski TF. Mechanism of tumor rejection with doublets of CTLA-4, PD-1/PD-L1, or IDO blockade involves restored IL-2 production and proliferation of CD8(+) T cells directly within the tumor microenvironment. J Immunother Cancer. 2014;2:3. https://doi.org/10.1186/2051-1426-2-3.

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Funding

This work was supported by National Natural Science Funds of China (Nos. 81401887 and 81401888).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Jian You, Wengui Xu or Xiubao Ren.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Informed consent and ethics statement

Informed consent was obtained from all individual participants included in the study. Written informed obtained from each subject complies with the Declaration of Helsinki. The study was approved by the Ethical Committee of TMUCHI.

Confirmation statement

My study’s involvement with human subjects complies with the Declaration of Helsinki.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

This article is part of the Topical Collection on Oncology – Chest

Electronic supplementary material

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, Y., Zhao, N., Wu, Z. et al. New insight on the correlation of metabolic status on 18F-FDG PET/CT with immune marker expression in patients with non-small cell lung cancer. Eur J Nucl Med Mol Imaging 47, 1127–1136 (2020). https://doi.org/10.1007/s00259-019-04500-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00259-019-04500-7

Keywords

Navigation