Skip to main content

Advertisement

Log in

The emerging role of STING-dependent signaling on cell death

  • REVIEW
  • Published:
Immunologic Research Aims and scope Submit manuscript

Abstract

STING is a newly identified adaptor protein for sensing cytosolic nucleic acid. It is well established that STING plays a crucial role in innate immune response via inducing production of type I IFN. Emerging evidence suggests that the activation of STING-dependent signaling is also implicated in the process of cell death, such as apoptosis, pyroptosis, necroptosis, and autophagy. Of note, the pro-death outcome is even predominant in certain cell types, like lymphocytes, myeloid cells, and hepatocytes. Given that STING agonists are being tested for enhancing antitumor immune responses, it is necessary to fully understand the outcome of STING activation. The anti-microorganism response mediated by STING has been well described; therefore, we focus on the role of STING-dependent signaling on cell death in this review.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  1. Ishikawa H, Barber GN. STING is an endoplasmic reticulum adaptor that facilitates innate immune signalling. Nature. 2008;455(7213):674–U74. https://doi.org/10.1038/nature07317.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Ng KW, Marshall EA, Bell JC, Lam WL. cGAS–STING and cancer: dichotomous roles in tumor immunity and development. Trends Immunol. 2017.

  3. Barber GN. STING: infection, inflammation and cancer. Nat Rev Immunol. 2015;15(12):760–70.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Ahn J, Barber GN. Self-DNA, STING-dependent signaling and the origins of autoinflammatory disease. Curr Opin Immunol. 2014;31:121–6. https://doi.org/10.1016/j.coi.2014.10.009.

    Article  CAS  PubMed  Google Scholar 

  5. West AP, Khoury-Hanold W, Staron M, Tal MC, Pineda CM, Lang SM, et al. Mitochondrial DNA stress primes the antiviral innate immune response. Nature. 2015;520(7548):553–+. https://doi.org/10.1038/nature14156.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Sun L, Wu J, Du F, Chen X, Chen ZJ. Cyclic GMP-AMP synthase is a cytosolic DNA sensor that activates the type I interferon pathway. Science. 2013;339(6121):786–91. https://doi.org/10.1126/science.1232458.

    Article  CAS  PubMed  Google Scholar 

  7. Cai X, Chiu Y-H, Chen ZJ. The cGAS-cGAMP-STING pathway of cytosolic DNA sensing and signaling. Mol Cell. 2014;54(2):289–96. https://doi.org/10.1016/j.molcel.2014.03.040.

    Article  CAS  Google Scholar 

  8. Burdette DL, Monroe KM, Sotelo-Troha K, Iwig JS, Eckert B, Hyodo M, et al. STING is a direct innate immune sensor of cyclic di-GMP. Nature. 2011;478(7370):515–U111. https://doi.org/10.1038/nature10429.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Woodward JJ, Iavarone AT, Portnoy DA. C-di-AMP secreted by intracellular listeria monocytogenes activates a host type I interferon response. Science. 2010;328(5986):1703–5. https://doi.org/10.1126/science.1189801.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Corrales L, Glickman LH, McWhirter SM, Kanne DB, Sivick KE, Katibah GE, et al. Direct activation of STING in the tumor microenvironment leads to potent and systemic tumor regression and immunity. Cell Rep. 2015;11(7):1018–30. https://doi.org/10.1016/j.celrep.2015.04.031.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Woo S-R, Fuertes MB, Corrales L, Spranger S, Furdyna MJ, Leung MYK, et al. STING-dependent cytosolic DNA sensing mediates innate immune recognition of immunogenic tumors. Immunity. 2014;41(5):830–42. https://doi.org/10.1016/j.immuni.2014.10.017.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Gao P, Zillinger T, Wang W, Ascano M, Dai P, Hartmann G, et al. Binding-pocket and lid-region substitutions render human STING sensitive to the species-specific drug DMXAA. Cell Rep. 2014;8(6):1668–76. https://doi.org/10.1016/j.celrep.2014.08.010.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Luo M, Wang H, Wang Z, Cai H, Lu Z, Li Y, et al. A STING-activating nanovaccine for cancer immunotherapy. Nat Nanotechnol. 2017;12(7):648–+. https://doi.org/10.1038/nnano.2017.52.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Fu J, Kanne DB, Leong M, Glickman LH, McWhirter SM, Lemmens E, et al. STING agonist formulated cancer vaccines can cure established tumors resistant to PD-1 blockade. Sci Transl Med. 2015;7(283):283ra52. https://doi.org/10.1126/scitranslmed.aaa4306.

    Article  PubMed  PubMed Central  Google Scholar 

  15. Deng L, Liang H, Xu M, Yang X, Burnette B, Arina A, et al. STING-dependent cytosolic DNA sensing promotes radiation-induced type I interferon-dependent antitumor immunity in immunogenic tumors. Immunity. 2014;41(5):843–52. https://doi.org/10.1016/j.immuni.2014.10.019.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Corrales L, McWhirter SM, Dubensky TW Jr, Gajewski TF. The host STING pathway at the interface of cancer and immunity. J Clin Investig. 2016;126(7):2404–11. https://doi.org/10.1172/jci86892.

    Article  PubMed  Google Scholar 

  17. Cheng N, Watkins-Schulz R, Junkins RD, David CN, Johnson BM, Montgomery SA, et al. A nanoparticle-incorporated STING activator enhances antitumor immunity in PD-L1-insensitive models of triple-negative breast cancer. JCI Insight. 2018;3(22). https://doi.org/10.1172/jci.insight.120638.

  18. Wilson DR, Sen R, Sunshine JC, Pardoll DM, Green JJ, Kim YJ. Biodegradable STING agonist nanoparticles for enhanced cancer immunotherapy. Nanomedicine. 2018;14(2):237–46. https://doi.org/10.1016/j.nano.2017.10.013.

    Article  CAS  PubMed  Google Scholar 

  19. Hanson MC, Crespo MP, Abraham W, Moynihan KD, Szeto GL, Chen SH, et al. Nanoparticulate STING agonists are potent lymph node-targeted vaccine adjuvants. J Clin Invest. 2015;125(6):2532–46. https://doi.org/10.1172/JCI79915.

    Article  PubMed  PubMed Central  Google Scholar 

  20. Aroh C, Wang Z, Dobbs N, Luo M, Chen Z, Gao J, et al. Innate immune activation by cGMP-AMP nanoparticles leads to potent and long-acting antiretroviral response against HIV-1. J Immunol. 2017;199(11):3840–8. https://doi.org/10.4049/jimmunol.1700972.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. An M, Yu C, Xi J, Reyes J, Mao G, Wei WZ, et al. Induction of necrotic cell death and activation of STING in the tumor microenvironment via cationic silica nanoparticles leading to enhanced antitumor immunity. Nanoscale. 2018;10(19):9311–9. https://doi.org/10.1039/c8nr01376d.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Ramanjulu JM, Pesiridis GS, Yang J, Concha N, Singhaus R, Zhang SY, et al. Design of amidobenzimidazole STING receptor agonists with systemic activity. Nature. 2018;564(7736):439–43. https://doi.org/10.1038/s41586-018-0705-y.

    Article  CAS  PubMed  Google Scholar 

  23. Konno H, Konno K, Barber GN. Cyclic dinucleotides trigger ULK1 (ATG1) phosphorylation of STING to prevent sustained innate immune signaling. Cell. 2013;155(3):688–98. https://doi.org/10.1016/j.cell.2013.09.049.

    Article  CAS  PubMed  Google Scholar 

  24. Gulen MF, Koch U, Haag SM, Schuler F, Apetoh L, Villunger A, et al. Signalling strength determines proapoptotic functions of STING. Nat Commun. 2017;8(1):427. https://doi.org/10.1038/s41467-017-00573-w.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Moretti J, Roy S, Bozec D, Martinez J, Chapman JR, Ueberheide B, et al. STING senses microbial viability to orchestrate stress-mediated autophagy of the endoplasmic reticulum. Cell. 2017;171(4):809–23 e13. https://doi.org/10.1016/j.cell.2017.09.034.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Tang CH, Zundell JA, Ranatunga S, Lin C, Nefedova Y, Del Valle JR, et al. Agonist-mediated activation of STING induces apoptosis in malignant B cells. Cancer Res. 2016;76(8):2137–52. https://doi.org/10.1158/0008-5472.CAN-15-1885.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Sze A, Belgnaoui SM, Olagnier D, Lin R, Hiscott J, van Grevenynghe J. Host restriction factor SAMHD1 limits human T cell leukemia virus type 1 infection of monocytes via STING-mediated apoptosis. Cell Host Microbe. 2013;14(4):422–34. https://doi.org/10.1016/j.chom.2013.09.009.

    Article  CAS  PubMed  Google Scholar 

  28. Cui Y, Zhao D, Sreevatsan S, Liu C, Yang W, Song Z, et al. Mycobacterium bovis induces endoplasmic reticulum stress mediated-apoptosis by activating IRF3 in a murine macrophage cell line. Front Cell Infect Microbiol. 2016;6:182. https://doi.org/10.3389/fcimb.2016.00182.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Petrasek J, Iracheta-Vellve A, Csak T, Satishchandran A, Kodys K, Kurt-Jones EA, et al. STING-IRF3 pathway links endoplasmic reticulum stress with hepatocyte apoptosis in early alcoholic liver disease. Proc Natl Acad Sci U S A. 2013;110(41):16544–9. https://doi.org/10.1073/pnas.1308331110.

    Article  PubMed  PubMed Central  Google Scholar 

  30. Iracheta-Vellve A, Petrasek J, Gyongyosi B, Satishchandran A, Lowe P, Kodys K, et al. Endoplasmic reticulum stress-induced hepatocellular death pathways mediate liver injury and fibrosis via stimulator of interferon genes. J Biol Chem. 2016;291(52):26794–805. https://doi.org/10.1074/jbc.M116.736991.

  31. Qiao JT, Cui C, Qing L, Wang LS, He TY, Yan F, et al. Activation of the STING-IRF3 pathway promotes hepatocyte inflammation, apoptosis and induces metabolic disorders in nonalcoholic fatty liver disease. Metabolism. 2018;81:13–24. https://doi.org/10.1016/j.metabol.2017.09.010.

    Article  CAS  PubMed  Google Scholar 

  32. Webster SJ, Brode S, Ellis L, Fitzmaurice TJ, Elder MJ, Gekara NO, et al. Detection of a microbial metabolite by STING regulates inflammasome activation in response to chlamydia trachomatis infection. PLoS Pathog. 2017;13(6):e1006383. https://doi.org/10.1371/journal.ppat.1006383.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Man SM, Karki R, Malireddi RK, Neale G, Vogel P, Yamamoto M, et al. The transcription factor IRF1 and guanylate-binding proteins target activation of the AIM2 inflammasome by Francisella infection. Nat Immunol. 2015;16(5):467–75. https://doi.org/10.1038/ni.3118.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Gaidt MM, Ebert TS, Chauhan D, Ramshorn K, Pinci F, Zuber S, et al. The DNA inflammasome in human myeloid cells is initiated by a STING-cell death program upstream of NLRP3. Cell. 2017;171(5):1110–24 e18. https://doi.org/10.1016/j.cell.2017.09.039.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Schock SN, Chandra NV, Sun Y, Irie T, Kitagawa Y, Gotoh B, et al. Induction of necroptotic cell death by viral activation of the RIG-I or STING pathway. Cell Death Differ. 2017;24(4):615–25. https://doi.org/10.1038/cdd.2016.153.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Brault M, Olsen TM, Martinez J, Stetson DB, Oberst A. Intracellular nucleic acid sensing triggers necroptosis through synergistic type I IFN and TNF signaling. J Immunol. 2018;200(8):2748–56. https://doi.org/10.4049/jimmunol.1701492.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Bhatelia K, Singh K, Prajapati P, Sripada L, Roy M, Singh R. MITA modulated autophagy flux promotes cell death in breast cancer cells. Cell Signal. 2017;35:73–83. https://doi.org/10.1016/j.cellsig.2017.03.024.

    Article  CAS  PubMed  Google Scholar 

  38. White MJ, McArthur K, Metcalf D, Lane RM, Cambier JC, Herold MJ, et al. Apoptotic caspases suppress mtDNA-induced STING-mediated type I IFN production. Cell. 2014;159(7):1549–62. https://doi.org/10.1016/j.cell.2014.11.036.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Rongvaux A, Jackson R, Harman CCD, Li T, West AP, de Zoete MR, et al. Apoptotic caspases prevent the induction of type I interferons by mitochondrial DNA. Cell. 2014;159(7):1563–77. https://doi.org/10.1016/j.cell.2014.11.037.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Larkin B, Ilyukha V, Sorokin M, Buzdin A, Vannier E, Poltorak A. Cutting edge: activation of STING in T cells induces type I IFN responses and cell death. J Immunol. 2017;199(2):397–402. https://doi.org/10.4049/jimmunol.1601999.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Divangahi M, Behar SM, Remold H. Dying to live: how the death modality of the infected macrophage modulates immunity to tuberculosis. In: Divangahi M, editor. New Paradigm of Immunity to Tuberculosis. Adv Exp Med Biol, 2013. p. 103–120.

  42. Orzalli MH, Kagan JC. Apoptosis and necroptosis as host defense strategies to prevent viral infection. Trends Cell Biol. 2017;27(11):800–9. https://doi.org/10.1016/j.tcb.2017.05.007.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Chattopadhyay S, Kuzmanovic T, Zhang Y, Wetzel JL, Sen GC. Ubiquitination of the transcription factor IRF-3 activates RIPA, the apoptotic pathway that protects mice from viral pathogenesis. Immunity. 2016;44(5):1151–61. https://doi.org/10.1016/j.immuni.2016.04.009.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. McArthur K, Whitehead LW, Heddleston JM, Li L, Padman BS, Oorschot V, et al. BAK/BAX macropores facilitate mitochondrial herniation and mtDNA efflux during apoptosis. Science. 2018;359(6378):eaao6047. https://doi.org/10.1126/science.aao6047.

    Article  CAS  PubMed  Google Scholar 

  45. Jorgensen I, Miao EA. Pyroptotic cell death defends against intracellular pathogens. Immunol Rev. 2015;265(1):130–42. https://doi.org/10.1111/imr.12287.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Corrales L, Woo SR, Williams JB, McWhirter SM, Dubensky TW Jr, Gajewski TF. Antagonism of the STING pathway via activation of the AIM2 inflammasome by intracellular DNA. J Immunol. 2016;196(7):3191–8. https://doi.org/10.4049/jimmunol.1502538.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Banerjee I, Behl B, Mendonca M, Shrivastava G, Russo AJ, Menoret A, et al. Gasdermin D restrains type I interferon response to cytosolic DNA by disrupting ionic homeostasis. Immunity. 2018;49(3):413–26 e5. https://doi.org/10.1016/j.immuni.2018.07.006.

    Article  CAS  PubMed  Google Scholar 

  48. Chen D, Tong J, Yang L, Wei L, Stolz DB, Yu J, et al. PUMA amplifies necroptosis signaling by activating cytosolic DNA sensors. Proc Natl Acad Sci U S A. 2018;115(15):3930–5. https://doi.org/10.1073/pnas.1717190115.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Mizushima N, Komatsu M. Autophagy: renovation of cells and tissues. Cell. 2011;147(4):728–41. https://doi.org/10.1016/j.cell.2011.10.026.

    Article  CAS  PubMed  Google Scholar 

  50. Kobayashi S. Choose delicately and reuse adequately: the newly revealed process of autophagy. Biol Pharm Bull. 2015;38(8):1098–103. https://doi.org/10.1248/bpb.b15-00096.

    Article  CAS  PubMed  Google Scholar 

  51. Zhang Y, Whaley-Connell AT, Sowers JR, Ren J. Autophagy as an emerging target in cardiorenal metabolic disease: from pathophysiology to management. Pharmacol Ther. 2018;191:1–22. https://doi.org/10.1016/j.pharmthera.2018.06.004.

    Article  CAS  PubMed  Google Scholar 

  52. White E. The role for autophagy in cancer. J Clin Investig. 2015;125(1):42–6. https://doi.org/10.1172/jci73941.

    Article  PubMed  Google Scholar 

  53. Efeyan A, Comb WC, Sabatini DM. Nutrient-sensing mechanisms and pathways. Nature. 2015;517(7534):302–10. https://doi.org/10.1038/nature14190.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Kaur J, Debnath J. Autophagy at the crossroads of catabolism and anabolism. Nat Rev Mol Cell Biol. 2015;16(8):461–72. https://doi.org/10.1038/nrm4024.

    Article  CAS  Google Scholar 

  55. Liu Y, Levine B. Autosis and autophagic cell death: the dark side of autophagy. Cell Death Differ. 2015;22(3):367–76. https://doi.org/10.1038/cdd.2014.143.

    Article  CAS  PubMed  Google Scholar 

  56. Roos WP, Thomas AD, Kaina B. DNA damage and the balance between survival and death in cancer biology. Nat Rev Cancer. 2016;16(1):20–33. https://doi.org/10.1038/nrc.2015.2.

    Article  CAS  PubMed  Google Scholar 

  57. Liang Q, Seo GJ, Choi YJ, Ge J, Rodgers MA, Shi M, et al. Autophagy side of MB21D1/cGAS DNA sensor. Autophagy. 2014;10(6):1146–7. https://doi.org/10.4161/auto.28769.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Moretti J, Blander JM. Detection of a vita-PAMP STINGs cells into reticulophagy. Autophagy. 2018;14(6):1102–4. https://doi.org/10.1080/15548627.2018.1441471.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Watson RO, Bell SL, MacDuff DA, Kimmey JM, Diner EJ, Olivas J, et al. The cytosolic sensor cGAS detects mycobacterium tuberculosis DNA to induce type I interferons and activate autophagy. Cell Host Microbe. 2015;17(6):811–9. https://doi.org/10.1016/j.chom.2015.05.004.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Liu Y, Gordesky-Gold B, Leney-Greene M, Weinbren NL, Tudor M, Cherry S. Inflammation-induced, STING-dependent autophagy restricts Zika virus infection in the drosophila brain. Cell Host Microbe. 2018;24(1):57–68 e3. https://doi.org/10.1016/j.chom.2018.05.022.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. Liu D, Wu H, Wang C, Li Y, Tian H, Siraj S, et al. STING directly activates autophagy to tune the innate immune response. Cell Death Differ. 2018. https://doi.org/10.1038/s41418-018-0251-z.

Download references

Author contributions’ statement

F.S. and S.L. wrote the manuscript. Z.L. collected the references and revised the manuscript. Z.Y. helped in language editing. W.G. supervised the review.

Funding

This study is supported by the National Natural Science Foundation of China (81602103), Natural Science Foundation of Jiangsu Province (BK20160114), Distinguished Young Scholar Project of Medical Science and Technology Development Foundation of Nanjing Department of Health (JQX17005), Key Project of Medical Science and Technology Development Foundation of Nanjing Department of Health (YKK16114), Medical Research Program of Jiangsu Provincial Commission of Health and Family Planning (Q2017007), and Wu Jieping Medical Foundation (320.2710.1817).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Song Liu or Wenxian Guan.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sun, F., Liu, Z., Yang, Z. et al. The emerging role of STING-dependent signaling on cell death. Immunol Res 67, 290–296 (2019). https://doi.org/10.1007/s12026-019-09073-z

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12026-019-09073-z

Keywords

Navigation