Skip to main content
Log in

Has the adipokine profile an influence on the catch-up growth type in small for gestational age infants?

  • ORIGINAL ARTICLE
  • Published:
Journal of Physiology and Biochemistry Aims and scope Submit manuscript

Abstract

Infants born small for gestational age (SGA) are at increased risk of perinatal morbidity, persistent short stature, and metabolic alterations in later life. Moreover, the post-natal growth pattern of SGA infants may be an important contributor to health outcomes later in life, which can be influenced by adipokines. The aims of this study were to compare plasma adipokine profiles (leptin, adiponectin, vaspin, chemerin, and nephroblastoma overexpressed (NOV/CCN3)) among SGA newborns aged 3 months, with low, normal, or high catch-up, to search for potential differences between males and females and to analyze the evolution of several adipokines in plasma from SGA newborns between 3 and 24 months. This prospective, longitudinal study was addressed in SGA Caucasian subjects at Hospital Universitario de Álava-Txagorritxu. We observed that infants with fast catch-up showed significantly lower birth weight than the other two groups. As far as adipokines are concerned, they could have an influence on catch-up type because differences among the three experimental groups were found. It may be proposed that health prognoses in infants with slow and fast catch-up are opposite, not only in adulthood but also during their first months. Finally, adipokine evolution patterns during the first 24 months of age differ, depending on the adipokine, and 24-month-old males show lower levels of leptin, adiponectin, and omentin than females.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  1. Ahima RS, Flier JS (2000) Adipose tissue as an endocrine organ. Trends Endocrinol Metab 11:327–332

    Article  CAS  PubMed  Google Scholar 

  2. Ahima RS, Qi Y, Singhal NS, Jackson MB, Scherer PE (2006) Brain adipocytokine action and metabolic regulation. Diabetes 55(Suppl 2):S145–S154

    Article  CAS  PubMed  Google Scholar 

  3. Akcay A, Akar M, Demirel G, Canpolat FE, Erdeve O, Dilmen U (2013) Umbilical cord and fifth-day serum vaspin concentrations in small-, appropriate-, and large-for-gestational age neonates. J Pediatr Endocrinol Metab 26:635–638

    Article  CAS  PubMed  Google Scholar 

  4. Albertsson-Wikland K, Boguszewski M, Karlberg J (1998) Children born small-for-gestational age: postnatal growth and hormonal status. Horm Res Paediatr 49(suppl 2):7–13

    Article  CAS  Google Scholar 

  5. Amador-Licona N, Martinez-Cordero C, Guizar-Mendoza JM, Malacara JM, Hernandez J, Alcala JF (2007) Catch-up growth in infants born small for gestational age - a longitudinal study. J Pediatr Endocrinol Metab 20:379–386. https://doi.org/10.1515/JPEM.2007.20.3.379

    Article  CAS  PubMed  Google Scholar 

  6. Blüher M (2012) Vaspin in obesity and diabetes: pathophysiological and clinical significance. Endocrine 41:176–182

    Article  CAS  PubMed  Google Scholar 

  7. Boersma B, Wit JM (1997) Catch-up growth. Endocr Rev 18:646–661

    Article  CAS  PubMed  Google Scholar 

  8. Bozaoglu K, Bolton K, McMillan J, Zimmet P, Jowett J, Collier G, Walder K, Segal D (2007) Chemerin is a novel adipokine associated with obesity and metabolic syndrome. Endocrinology 148:4687–4694

    Article  CAS  PubMed  Google Scholar 

  9. Bozaoglu K, Segal D, Shields KA, Cummings N, Curran JE, Comuzzie AG, Mahaney MC, Rainwater DL, VandeBerg JL, MacCluer JW, Collier G, Blangero J, Walder K, Jowett JBM (2009) Chemerin is associated with metabolic syndrome phenotypes in a Mexican-American population. J Clin Endocrinol Metab 94:3085–3088

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Bozzola E, Meazza C, Arvigo M, Travaglino P, Pagani S, Stronati M, Gasparoni A, Bianco C, Bozzola M (2010) Role of adiponectin and leptin on body development in infants during the first year of life. Ital J Pediatr 36:26

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Briffa JF, McAinch AJ, Romano T, Wlodek ME, Hryciw DH (2015) Leptin in pregnancy and development: a contributor to adulthood disease? Am J Physiol Endocrinol Metab 308:E335–E350

    Article  CAS  PubMed  Google Scholar 

  12. Britt C, Sven C, Ove A (2005) Preterm and term births of small for gestational age infants: a population-based study of risk factors among nulliparous women. Br J Obstet Gynaecol 105:1011–1017

    Google Scholar 

  13. Buyukinan M, Atar M, Can U, Pirgon O, Guzelant A, Deniz I (2018) The association between serum vaspin and omentin-1 levels in obese children with metabolic syndrome. Metab Syndr Relat Disord 16(2):76–81

    Article  CAS  PubMed  Google Scholar 

  14. Carling SJ, Demment MM, Kjolhede CL, Olson CM (2015) Breastfeeding duration and weight gain trajectory in infancy. Pediatrics 135:111–119

    Article  PubMed  PubMed Central  Google Scholar 

  15. Carrascosa A, Fernández JM, Ferrández A, López-Siguero JP, López D, Sánchez E (2010) Estudios españoles de crecimiento. Available from: http://www.aeped.es/noticias/estudios-espanoles-crecimiento-2010. Last Accessed April 2019

  16. Cheng G, Bolzenius K, Joslowski G, Günther AL, Kroke A, Heinrich J, Buyken AE (2015) Velocities of weight, height and fat mass gain during potentially critical periods of growth are decisive for adult body composition. Eur J Clin Nutr 69:262–268

    Article  CAS  PubMed  Google Scholar 

  17. Cho WK, Suh BK (2016) Catch-up growth and catch-up fat in children born small for gestational age. Korean J Pediatr 59(1):1–7

    Article  PubMed  PubMed Central  Google Scholar 

  18. de Kroon ML, Renders CM, van Wouwe JP, van Buuren S, Hirasing RA (2010) The Terneuzen birth cohort: BMI change between 2 and 6 years is most predictive of adult cardiometabolic risk. PLoS One 5(11):e13966

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Dos Santos E, Duval F, Vialard F, Dieudonné MN (2015) The roles of leptin and adiponectin at the fetal-maternal interface in humans. Horm Mol Biol Clin Invest 24:47–63

    CAS  Google Scholar 

  20. D'souza AM, Neumann UH, Glavas MM, Kieffer TJ (2017) The glucoregulatory actions of leptin. Mol Metab 6(9):1052–1065

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. El-Mesallamy HO, Kassem DH, El-Demerdash E, Amin AI (2011) Vaspin and visfatin/Nampt are interesting interrelated adipokines playing a role in the pathogenesis of type 2 diabetes mellitus. Metabolism 60:63–70

    Article  CAS  PubMed  Google Scholar 

  22. Escoté X, Gómez-Zorita S, López-Yoldi M, Milton-Laskibar I, Ferández-Quintela A, Martínez AJ, Moreno-Aliaga J, Portillo MP (2017) Role of omentin, vaspin, cardiotrophin-1, TWEAK and NOV/CCN3 in obesity and diabetes development. Int J Mol Sci 18

  23. Matthews DR, Hosker JP, Rudenski AS, Naylor BA, Treacher DF, Turner RC (1985) Homeostasis model assessment: insulin resistance and beta-cell function from fasting plasma glucose and insulin concentrations in man. Diabetologia 28:412–419

    Article  CAS  PubMed  Google Scholar 

  24. Giapros V, Vavva E, Siomou E, Kolios G, Tsabouri S, Cholevas V, Bairaktari E, Tzoufi M, Challa A (2017) Low-birth-weight, but not catch-up growth, correlates with insulin resistance and resistin level in SGA infants at 12 months. J Matern Fetal Neonatal Med 30:1771–1776

    Article  CAS  PubMed  Google Scholar 

  25. Heiker JT (2014) Vaspin (serpinA12) in obesity, insulin resistance, and inflammation. J Pept Sci 20(5):299–306

    Article  CAS  PubMed  Google Scholar 

  26. Helfer G, Wu Q (2018) Chemerin: a multifaceted adipokine involved in metabolic disorders. J Endocrinol 238:R79–R94

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Hokken-Koelega AC, De Ridder MA, Lemmen RJ, Den Hartog H, De Muinck Keizer-Schrama SM, Drop SL (1995) Children born small for gestational age: do they catch up? Pediatr Res 38:267–271

    Article  CAS  PubMed  Google Scholar 

  28. Hovi P, Andersson S, Eriksson JG, Järvenpää AL, Strang-Karlsson S, Mäkitie O, Kajantie E (2007) Glucose regulation in young adults with very low birth weight. N Engl J Med 356:2053–2063

    Article  CAS  PubMed  Google Scholar 

  29. Huang Y, Li Y, Chen Q, Chen H, Ma H, Su Z, Du M (2015) Low serum adiponectin levels are associated with reduced insulin sensitivity and lipid disturbances in short children born small for gestational age. Clin Endocrinol 83:78–84

    Article  CAS  Google Scholar 

  30. Iñiguez G, Soto N, Avila A, Salazar T, Ong K, Dunger D, Mericq V (2004) Adiponectin levels in the first two years of life in a prospective cohort: relations with weight gain, leptin levels and insulin sensitivity. J Clin Endocrinol Metab 89:5500–5503

    Article  CAS  PubMed  Google Scholar 

  31. Jornayvaz FR, Vollenweider P, Bochud M, Mooser V, Waeber G, Marques-Vidal P (2016) Low birth weight leads to obesity, diabetes and increased leptin levels in adults: the CoLaus study. Cardiovasc Diabetol 15:73

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Karlberg JP, Albertsson-Wikland K, Kwan EY, Lam BC, Low LC (1997) The timing of early postnatal catch-up growth in normal, full-term infants born short for gestational age. Horm Res 48(Suppl 1):17–24

    Article  CAS  PubMed  Google Scholar 

  33. Kistner A, Vanpée M, Hall K (2013) Leptin may enhance hepatic insulin sensitivity in children and women born small for gestational age. Endocr Connect 2:38–49

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Lee PA, Chernausek SD, Hokken-Koelega A, Czernichow P (2003) International small for gestational age advisory board consensus development conference statement: management of short children born small for gestational age, April 24-October 1, 2001. Pediatrics 111:1253–1261

    Article  PubMed  Google Scholar 

  35. Lei X, Chen Y, Ye J, Ouyang F, Jiang F, Zhang J (2015) The optimal postnatal growth trajectory for term small for gestational age babies: a prospective cohort study. J Pediatr 166:54–58

    Article  PubMed  Google Scholar 

  36. Levy-Marchal C, Jaquet D (2004) Long-term metabolic consequences of being born small for gestational age. Pediatr Diabetes 5:147–153

    Article  PubMed  Google Scholar 

  37. Maeyama K, Morioka I, Iwatani S, Fukushima S, Kurokawa D, Yamana K, Nishida K, Ohyama S, Fujioka K, Awano H, Taniguchi-Ikeda M, Nozu K, Nagase H, Nishimura N, Shirai C, Iijima K (2016) Gestational age-dependency of height and body mass index trajectories during the first 3 years in Japanese small-for-gestational age children. Sci Rep 6:38659

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Martin A, Connelly A, Bland RM, Reilly JJ (2017) Health impact of catch-up growth in low-birth weight infants: systematic review, evidence appraisal, and meta-analysis. Matern Child Nutr 13(1):https://doi.org/10.1111/mcn.12297

  39. Martinerie C, Garcia M, Do TT, Antoine B, Moldes M, Dorothee G, Kazazian C, Auclair M, Buyse M, Ledent T, Marchal PO, Fesatidou M, Beisseiche A, Koseki H, Hiraoka S, Chadjichristos CE, Blondeau B, Denis RG, Luquet S, Feve B (2016) NOV/CCN3: a new adipocytokine involved in obesity-associated insulin resistance. Diabetes 65(9):2502–2515

    Article  CAS  PubMed  Google Scholar 

  40. Mazaki-Tovi S, Kasher-Meron M, Hemi R, Haas J, Gat I, Lantsberg D, Hendler I, Kanety H (2012) Chemerin is present in human cord blood and is positively correlated with birthweight. Am J Obstet Gynecol 207:412.e1–412.10

    Article  CAS  Google Scholar 

  41. Meek TH, Morton GJ (2016) The role of leptin in diabetes: metabolic effects. Diabetologia 59(5):928–932

    Article  CAS  PubMed  Google Scholar 

  42. Ong KKL, Ahmed ML, Emmett PM, Preece MA, Dunger DB (2000) Association between postnatal catch-up growth and obesity in childhood: prospective cohort study. BMJ. 320:967–971

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Parikh NI, Hwang S, Ingelsson E, Benjamin EJ, Fox CS, Vasan RS, Murabito JM (2009) Breastfeeding in infancy and adult cardiovascular disease risk factors. Am J Med 122:656–663

    Article  PubMed  PubMed Central  Google Scholar 

  44. Rolland-Cachera MF, Deheeger M, Maillot M, Bellisle F (2006) Early adiposity rebound: causes and consequences for obesity in children and adults. Int J Obes 30(Suppl 4):S11–S17

    Article  Google Scholar 

  45. Yang R-Z, Lee M-J, Hu H, Pray J, Hai-Bin W, Hansen BC, Shuldiner AR, Fried SK, McLenithan JC, Gong D-W (2006) Identification of omentin as a novel depot-specific adipokine in human adipose tissue: possible role in modulating insulin action. Am J Physiol Endocrinol Metab 290:E1253–E1261

    Article  CAS  PubMed  Google Scholar 

  46. Saenger P, Czernichow P, Hughes I, Reiter EO (2007) Small for gestational age: short stature and beyond. Endocr Rev 28:219–251

    Article  CAS  PubMed  Google Scholar 

  47. Saggese G, Fanos M, Simi F (2013) SGA children: auxological and metabolic outcomes - the role of GH treatment. J Matern Fetal Neonatal Med 26(Suppl 2):64–67

    Article  CAS  PubMed  Google Scholar 

  48. Singhal A (2017) Long-term adverse effects of early growth acceleration or catch-up growth. Ann Nutr Metab 70(3):236–240

    Article  CAS  PubMed  Google Scholar 

  49. Tannenbaum GS, Gurd W, Lapointe M (1998) Leptin is a potent stimulator of spontaneous pulsatile growth hormone (GH) secretion and the GH response to GH-releasing hormone. Endocrinology 139:3871–3875

    Article  CAS  PubMed  Google Scholar 

  50. Xiao X, Zhang Z, Li W, Feng K, Sun Q, Cohen HJ, Xu T, Wang H, Liu A, Gong X, Shen Y, Yi Z (2010) Low birth weight is associated with components of the metabolic syndrome. Metabolism 59:1282–1286

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Zhu X, Jiang Y, Shan PF, Shen J, Liang QH, Cui RR, Liu Y, Liu GY, Wu SS, Lu Q, Xie H, Liu YS, Yuan LQ, Liao EY (2013) Vaspin attenuates the apoptosis of human osteoblasts through ERK signaling pathway. Amino Acids 44(3):961–968

    Article  CAS  PubMed  Google Scholar 

  52. Zieger K, Weiner J, Krause K, Schwarz M, Kohn M, Stumvoll M, Bluher M, Heiker JT (2018) Vaspin suppresses cytokine-induced inflammation in 3T3-L1 adipocytes via inhibition of NFkappaB pathway. Mol Cell Endocrinol 460:181–188

    Article  CAS  PubMed  Google Scholar 

Download references

Funding

This work was supported by grants from Pfizer International (2012/13), Government of the Basque Country (IT-572-13), and Instituto de Salud Carlos III (CIBERobn).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Alfredo Fernández-Quintela.

Ethics declarations

Ethical approval

The study protocol has been approved by the Ethical Committee of the Hospital Universitario de Álava-Txagorritxu (HUA) (Ref. 2012-050). All procedures performed in studies involving human participants were in accordance with the ethical standards of the institutional and/or national research committee and with the 1964 Helsinki declaration and its later amendments or comparable ethical standards.

Informed consent

Parents of all subjects have given their written informed consent to take part in the study. Informed consent was obtained from all individual participants included in the study.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Léniz, A., Portillo, M.P., Fernández-Quintela, A. et al. Has the adipokine profile an influence on the catch-up growth type in small for gestational age infants?. J Physiol Biochem 75, 311–319 (2019). https://doi.org/10.1007/s13105-019-00684-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13105-019-00684-6

Keywords

Navigation