Skip to main content
Log in

Electrodiffusion models of synaptic potentials in dendritic spines

  • Published:
Journal of Computational Neuroscience Aims and scope Submit manuscript

Abstract

The biophysical properties of dendritic spines play a critical role in neuronal integration but are still poorly understood, due to experimental difficulties in accessing them. Spine biophysics has been traditionally explored using theoretical models based on cable theory. However, cable theory generally assumes that concentration changes associated with ionic currents are negligible and, therefore, ignores electrodiffusion, i.e. the interaction between electric fields and ionic diffusion. This assumption, while true for large neuronal compartments, could be incorrect when applied to femto-liter size structures such as dendritic spines. To extend cable theory and explore electrodiffusion effects, we use here the Poisson (P) and Nernst-Planck (NP) equations, which relate electric field to charge and Fick’s law of diffusion, to model ion concentration dynamics in spines receiving excitatory synaptic potentials (EPSPs). We use experimentally measured voltage transients from spines with nanoelectrodes to explore these dynamics with realistic parameters. We find that (i) passive diffusion and electrodiffusion jointly affect the dynamics of spine EPSPs; (ii) spine geometry plays a key role in shaping EPSPs; and, (iii) the spine-neck resistance dynamically decreases during EPSPs, leading to short-term synaptic facilitation. Our formulation, which complements and extends cable theory, can be easily adapted to model ionic biophysics in other nanoscale bio-compartments.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  • Harris, K. M., & Kater, S. (1994). Dendritic spines: Cellular specializations imparting both stability and flexibility to synaptic function. Annual Review of Neuroscience, 17(1), 341–371.

    Article  CAS  PubMed  Google Scholar 

  • Yuste, R. (2011). Dendritic spines and distributed circuits. Neuron, 71(5), 772–781.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Yuste, R. (2010). Dendritic Spines. Cambridge: MIT Press.

    Book  Google Scholar 

  • Yuste, R., & Majewska, A. (2001). On the function of dendritic spines. Neuroscientist, 7(5), 387–395.

    Article  CAS  PubMed  Google Scholar 

  • Yang, G., Pan, F., & Gan, W.-B. (2009). Stably maintained dendritic spines are associated with lifelong memories. Nature, 462(7275), 920–924.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Stuart, G. J., & Spruston, N. (2015). Dendritic integration: 60 years of progress. Nature Neuroscience, 18(12), 1713–1721.

    Article  CAS  PubMed  Google Scholar 

  • Popovic, M. A., Carnevale, N., Rozsa, B., & Zecevic, D. (2015). Electrical behaviour of dendritic spines as revealed by voltage imaging. Nature Communications, 6, 8436.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Jayant, K., Hirtz, J. J., Plante, I. J. L., Tsai, D. M., de Boer, W. D. A. M., Semonche, A., Peterka, D. S., Owen, J. S., Sahin, O., Shepard, K. L., & Yuste, R. (2017). Targeted intracellular voltage recordings from dendritic spines using quantum-dot-coated nanopipettes. Nature Nanotechnology, 12(4), 335–342.

    Article  CAS  PubMed  Google Scholar 

  • Grunditz, A., Holbro, N., Tian, L., Zuo, Y., & Oertner, T. G. (2008). Spine neck plasticity controls postsynaptic calcium signals through electrical compartmentalization. The Journal of neuroscience : the official journal of the Society for Neuroscience, 28(50), 13457–13466.

    Article  CAS  Google Scholar 

  • Acker, C. D., Hoyos, E., & Loew, L. M. (2016). EPSPs Measured in Proximal Dendritic Spines of Cortical Pyramidal Neurons. eNeuro, 3(2). https://doi.org/10.1523/ENEURO.0050-15.2016.

  • Harnett, M. T., Makara, J. K., Spruston, N., Kath, W. L., & Magee, J. C. (2012). Synaptic amplification by dendritic spines enhances input cooperativity. Nature, 491, 599–602.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Cartailler, J., et al.. (2017a). Deconvolution of voltage sensor time series and electro-diffusion modeling of synaptic input in dendritic spines. Neuron, . (in press).

  • Svoboda, K., Tank, D. W., & Denk, W. (1996). Direct measurement of coupling between dendritic spines and shafts. Science, 272, 716–719.

    Article  CAS  PubMed  Google Scholar 

  • Tønnesen, J., Katona, G., Rózsa, B., & Nägerl, U. V. (2014). Spine neck plasticity regulates compartmentalization of synapses. Nature Neuroscience, 17(5), 678–685.

    Article  CAS  PubMed  Google Scholar 

  • Beaulieu-Laroche, L., Harnett, M.T. (2017). Dendritic Spines prevent synaptic voltage clamp. Neuron.

  • Araya, R., Jiang, J., Eisenthal, K. B., & Yuste, R. (2006). The spine neck filters membrane potentials. Proceedings of the National Academy of Sciences of the United States of America, 103(47), 17961–17966.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kwon, T., Sakamoto, M., Peterka, D. S., & Yuste, R. (2017). Attenuation of synaptic potentials in dendritic Spines. Cell Reports, 20(5), 1100–1110.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Arellano, J. I., Benavides-Piccione, R., Defelipe, J., & Yuste, R. (2007). Ultrastructure of dendritic spines: Correlation between synaptic and spine morphologies. Frontiers in Neuroscience, 1(1), 131–143.

    Article  PubMed  PubMed Central  Google Scholar 

  • Segev, I., & Rall, W. (1998). Excitable dendrites and spines: Earlier theoretical insights elucidate recent direct observations. Trends in Neurosciences, 21(11), 453–460.

    Article  CAS  PubMed  Google Scholar 

  • Koch, C. (1984). Cable theory in neurons with active, linearized membranes. Biological Cybernetics, 50(1), 15–33.

    Article  CAS  PubMed  Google Scholar 

  • Koch, C., & Poggio, T. (1983). Electrical properties of dendritic spines. TINS, 6, 80–83.

    Google Scholar 

  • Koch, C., Segev, I. (1998). Methods in neuronal modeling: from ions to networks. MIT press.

  • Jack, J. J. B., Noble, D., & Tsien, R. W. (1975). Electric current flow in excitable cells. London: Oxford University Press.

    Google Scholar 

  • Bloodgood, B. L., & Sabatini, B. L. (2005). Neuronal activity regulates diffusion across the neck of dendritic spines. Science, 310, 866–869.

    Article  CAS  PubMed  Google Scholar 

  • Miyazaki, K., Ross, W. N.. (2017). Sodium dynamics in pyramidal neuron dendritic spines: synaptically evoked entry predominantly through AMPA receptors and removal by diffusion. Journal of Neuroscience, p. 1758–17.

  • Schuss, Z., Singer, A., & Holcman, D. (2007). The narrow escape problem for diffusion in cellular microdomains. Proceedings of the National Academy of Sciences of the United States of America, 104(41), 16098–16103.

    Article  PubMed  PubMed Central  Google Scholar 

  • Kushmerick, M., & Podolsky, R. (1969). Ionic mobility in muscle cells. Science, 166(3910), 1297–1298.

    Article  CAS  PubMed  Google Scholar 

  • Qian, N., & Sejnowski, T. (1989). An electro-diffusion model for computing membrane potentials and ionic concentrations in branching dendrites, spines and axons. Biological Cybernetics, 62(1), 1–15.

    Article  Google Scholar 

  • Savtchenko, L. P., Poo, M. M., & Rusakov, D. A. (2017). Electrodiffusion phenomena in neuroscience: A neglected companion. Nature Reviews. Neuroscience, 18(10), 598–612.

    Article  CAS  PubMed  Google Scholar 

  • Sylantyev, S., Savtchenko, L. P., Ermolyuk, Y., Michaluk, P., & Rusakov, D. A. (2013). Spike-driven glutamate electrodiffusion triggers synaptic potentiation via a homer-dependent mGluR-NMDAR link. Neuron, 77(3), 528–541.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sylantyev, S., Savtchenko, L. P., Niu, Y. P., Ivanov, A. I., Jensen, T. P., Kullmann, D. M., Xiao, M. Y., & Rusakov, D. A. (2008). Electric fields due to synaptic currents sharpen excitatory transmission. Science, 319(5871), 1845–1849.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Schuss, Z., Nadler, B., & Eisenberg, R. S. (2001). Derivation of Poisson and Nernst-Planck equations in a bath and channel from a molecular model. Physical Review E, 64(3), 036116.

    Article  CAS  Google Scholar 

  • Holcman, D., & Yuste, R. (2015). The new nanophysiology: Regulation of ionic flow in neuronal subcompartments. Nature Reviews. Neuroscience, 16(11), 685–692.

    Article  CAS  PubMed  Google Scholar 

  • Chen, D., Lear, J., & Eisenberg, B. (1997). Permeation through an open channel: Poisson-Nernst-Planck theory of a synthetic ionic channel. Biophysical Journal, 72(1), 97–116.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Halnes, G., Mäki-Marttunen, T., Keller, D., Pettersen, K. H., Andreassen, O. A., & Einevoll, G. T. (2016). Effect of ionic diffusion on extracellular potentials in neural tissue. PLoS Computational Biology, 12(11), e1005193.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Pods, J., Schonke, J., & Bastian, P. (2013). Electrodiffusion models of neurons and extracellular space using the Poisson-Nernst-Planck equations--numerical simulation of the intra- and extracellular potential for an axon model. Biophysical Journal, 105(1), 242–254.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Jayant, K., et al. (2013). Programmable ion-sensitive transistor interfaces. II. Biomolecular sensing and manipulation. Physical Review E, 88(1), 012802.

    Article  CAS  Google Scholar 

  • Jayant, K., et al. (2014). Programmable ion-sensitive transistor interfaces. III. Design considerations, signal generation, and sensitivity enhancement. Physical Review E, 89(5), 052817.

    Article  CAS  Google Scholar 

  • Tsay, D., & Yuste, R. (2004). On the electrical function of dendritic spines. Trends in Neurosciences, 27(2), 77–83.

    Article  CAS  PubMed  Google Scholar 

  • Tovar, R.K., Westbrook, G. L. (2012). Ligand-Gated Ion Channels, in Cell Physiology Source Book (Fourth Edition).

  • Kosińska, I., et al. (2008). Rectification in synthetic conical nanopores: A one-dimensional Poisson-Nernst-Planck model. Physical Review E, 77(3), 031131.

    Article  CAS  Google Scholar 

  • Goldman, D. E. (1943). Potential, impedance, and rectification in membranes. The Journal of General Physiology, 27(1), 37–60.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Singer, A., & Norbury, J. (2009). A Poisson–Nernst–Planck model for biological ion channels—An asymptotic analysis in a three-dimensional narrow funnel. SIAM Journal on Applied Mathematics, 70(3), 949–968.

    Article  Google Scholar 

  • Schoch, R. B., Han, J., & Renaud, P. (2008). Transport phenomena in nanofluidics. Reviews of Modern Physics, 80(3), 839–883.

    Article  CAS  Google Scholar 

  • Yuste, R. (2013). Electrical compartmentalization in dendritic spines. Annual Review of Neuroscience, 36, 429–449.

    Article  CAS  PubMed  Google Scholar 

  • Bourne, J. N., & Harris, K. M. (2008). Balancing structure and function at hippocampal dendritic Spines. Annual Review of Neuroscience, 31, 37–67.

    Article  CAS  Google Scholar 

  • Ngo-Anh, T., et al. (2005). SK channels and NMDA receptors form a ca(2+)-mediated feedback loop in dendritic spines. Nature Neuroscience, 8, 642–649.

    Article  CAS  PubMed  Google Scholar 

  • Delpire, E., & Staley, K. J. (2014). Novel determinants of the neuronal cl(−) concentration. The Journal of Physiology, 592(19), 4099–4114.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Cartailler, J., Schuss, Z., & Holcman, D. (2017b). Electrostatics of non-neutral biological microdomains. Scientific Reports, 7(1), 11269.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Cartailler, J., Schuss, Z., & Holcman, D. (2017c). Analysis of the Poisson–Nernst–Planck equation in a ball for modeling the voltage–current relation in neurobiological microdomains. Physica D: Nonlinear Phenomena, 339, 39–48.

    Article  Google Scholar 

  • Zhou, T., Ming, Y., Perry, S. F., & Tatic-Lucic, S. (2016). Estimation of the physical properties of neurons and glial cells using dielectrophoresis crossover frequency. Journal of Biological Physics, 42(4), 571–586.

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

This work was supported by the NIMH (R01MH101218, R01MH100561) and the NINDS (R01NS110422). This material is also based upon work supported by, or in part by, the U. S. Army Research Laboratory and the U. S. Army Research Office under contract number W911NF-12-1-0594 (MURI). T.L. was partly supported by the Fondation pour la Recherche Médicale and the Philippe foundation. K.J was supported by the Kavli Institute of Brain Science at Columbia.

Author information

Authors and Affiliations

Authors

Contributions

T.L. and R.Y. conceived the project. T.L performed the modeling and analysis. K.J assisted with model development and analysis. T.L and K.J wrote the manuscript. R.Y assembled and directed the team, provided guidance, funding, and edited the manuscript.

Corresponding author

Correspondence to Thibault Lagache.

Ethics declarations

Conflict of interests

The authors declare that they have no conflict of interest.

Additional information

Action Editor: Upinder Singh Bhalla

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

SI includes detailed mathematical derivations of the equations presented here in this manuscript.

ESM 1

(PDF 940 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lagache, T., Jayant, K. & Yuste, R. Electrodiffusion models of synaptic potentials in dendritic spines. J Comput Neurosci 47, 77–89 (2019). https://doi.org/10.1007/s10827-019-00725-5

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10827-019-00725-5

Keywords

Navigation