Skip to main content

Advertisement

Log in

Improved precision in the analysis of randomized trials with survival outcomes, without assuming proportional hazards

  • Published:
Lifetime Data Analysis Aims and scope Submit manuscript

A Correction to this article was published on 04 September 2019

This article has been updated

Abstract

We present a new estimator of the restricted mean survival time in randomized trials where there is right censoring that may depend on treatment and baseline variables. The proposed estimator leverages prognostic baseline variables to obtain equal or better asymptotic precision compared to traditional estimators. Under regularity conditions and random censoring within strata of treatment and baseline variables, the proposed estimator has the following features: (i) it is interpretable under violations of the proportional hazards assumption; (ii) it is consistent and at least as precise as the Kaplan–Meier and inverse probability weighted estimators, under identifiability conditions; (iii) it remains consistent under violations of independent censoring (unlike the Kaplan–Meier estimator) when either the censoring or survival distributions, conditional on covariates, are estimated consistently; and (iv) it achieves the nonparametric efficiency bound when both of these distributions are consistently estimated. We illustrate the performance of our method using simulations based on resampling data from a completed, phase 3 randomized clinical trial of a new surgical treatment for stroke; the proposed estimator achieves a 12% gain in relative efficiency compared to the Kaplan–Meier estimator. The proposed estimator has potential advantages over existing approaches for randomized trials with time-to-event outcomes, since existing methods either rely on model assumptions that are untenable in many applications, or lack some of the efficiency and consistency properties (i)–(iv). We focus on estimation of the restricted mean survival time, but our methods may be adapted to estimate any treatment effect measure defined as a smooth contrast between the survival curves for each study arm. We provide R code to implement the estimator.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

Change history

  • 04 September 2019

    The R code used for the data analysis and simulations in our manuscript (Díaz et al. 2018) had two errors, which we have corrected.

  • 04 September 2019

    The R code used for the data analysis and simulations in our manuscript (D��az et��al. 2018) had two errors, which we have corrected.

References

  • Bai X, Tsiatis AA, Lu W, Song R (2017) Optimal treatment regimes for survival endpoints using a locally-efficient doubly-robust estimator from a classification perspective. Lifetime Data Anal 23(4):585–604

    Article  MathSciNet  MATH  Google Scholar 

  • Bang H, Robins JM (2005) Doubly robust estimation in missing data and causal inference models. Biometrics 61(4):962–973

    Article  MathSciNet  MATH  Google Scholar 

  • Bickel PJ, Klaassen CAJ, Ritov Y, Wellner J (1997) Efficient and adaptive estimation for semiparametric models. Springer, Berlin

    MATH  Google Scholar 

  • Brooks JC, van der Laan MJ, Singer DE, Go AS (2013) Targeted minimum loss-based estimation of causal effects in right-censored survival data with time-dependent covariates: Warfarin, stroke, and death in atrial fibrillation. J Causal Inference 1(2):235–254. https://doi.org/10.1515/jci-2013-0001

    Article  Google Scholar 

  • Cao W, Tsiatis AA, Davidian M (2009) Improving efficiency and robustness of the doubly robust estimator for a population mean with incomplete data. Biometrika 96(3):723–734

    Article  MathSciNet  MATH  Google Scholar 

  • Chen P-Y, Tsiatis AA (2001) Causal inference on the difference of the restricted mean lifetime between two groups. Biometrics 57(4):1030–1038

    Article  MathSciNet  MATH  Google Scholar 

  • Cole SR, Hernán MA (2004) Adjusted survival curves with inverse probability weights. Comput Methods Programs Biomed 75(1):45–49

    Article  Google Scholar 

  • Cole SR, Hernán MA, Robins JM, Anastos K, Chmiel J, Detels R, Ervin C, Feldman J, Greenblatt R, Kingsley L et al (2003) Effect of highly active antiretroviral therapy on time to acquired immunodeficiency syndrome or death using marginal structural models. Am J Epidemiol 158(7):687–694

    Article  Google Scholar 

  • Cox DR (1972) Regression models and life-tables (with discussion). J R Stat Soc Ser B 34(2):187–220

    MATH  Google Scholar 

  • Díaz I, Colantuoni E, Rosenblum M (2015) Enhanced precision in the analysis of randomized trials with ordinal outcomes. Biometrics. ISSN 1541-0420

  • Efron B et al (1979) Bootstrap methods: another look at the jackknife. Ann Stat 7(1):1–26

    Article  MathSciNet  MATH  Google Scholar 

  • Gruber S, van der Laan MJ (2012) Targeted minimum loss based estimator that outperforms a given estimator. Int J Biostat 8(1):1–22

    MathSciNet  Google Scholar 

  • Hahn J (1998) On the role of the propensity score in efficient semiparametric estimation of average treatment effects. Econometrica 66(2):315–331

    Article  MathSciNet  MATH  Google Scholar 

  • Hanley DF, Lane K, McBee N, Ziai W, Tuhrim S, Lees KR, Dawson J, Gandhi D, Ullman N, Mould WA, Mayo SW, Mendelow AD, Gregson B, Butcher K, Vespa P, Wright DW, Kase CS, Carhuapoma JR, Keyl PM, Diener-West M, Betz JF, Thompson C, Sugar EA, Yenokyan G, Janis S, John S, Harnof S, Lopez G, Aldrich EF, Harrigan MR, Ansari S, Jallo J, Caron J-L, LeDoux D, Adeoye O, Zuccarello M, Adams HP, Rosenblum M, Thompson RE, I.A. for the CLEAR III Investigators Awad (2017) Thrombolytic removal of intraventricular haemorrhage in treatment of severe stroke: results of the randomised, multicentre, multiregion, placebo-controlled clear iii trial. Lancet 389(10069):603–611. https://doi.org/10.1016/S0140-6736(16)32410-2

    Article  Google Scholar 

  • Hubbard AE, Van Der Laan MJ, Robins JM (2000) Nonparametric locally efficient estimation of the treatment specific survival distribution with right censored data and covariates in observational studies. In: Halloran ME, Berry D (eds) Statistical models in epidemiology, the environment, and clinical trials. Springer, Berlin, pp 135–177

  • Lu X, Tsiatis AA (2011) Semiparametric estimation of treatment effect with time-lagged response in the presence of informative censoring. Lifetime Data Anal 17(4):566–593

    Article  MathSciNet  MATH  Google Scholar 

  • Moore KL, van der Laan MJ (2009a) Increasing power in randomized trials with right censored outcomes through covariate adjustment. J Biopharm Stat 19(6):1099–1131

    Article  MathSciNet  Google Scholar 

  • Moore KL, van der Laan MJ (2009b) Covariate adjustment in randomized trials with binary outcomes: targeted maximum likelihood estimation. Stat Med 28(1):39–64

    Article  MathSciNet  Google Scholar 

  • Parast L, Tian L, Cai T (2014) Landmark estimation of survival and treatment effect in a randomized clinical trial. J Am Stat Assoc 109(505):384–394

    Article  MathSciNet  MATH  Google Scholar 

  • Pfanzagl J, Wefelmeyer W (1985) Contributions to a general asymptotic statistical theory. Stat Risk Model 3(3–4):379–388

    Google Scholar 

  • Robins JM, Ritov Y (1997) Toward a curse of dimensionality appropriate (CODA) asymptotic theory for semi-parametric models. Stat Med 16(3):285–319

    Article  Google Scholar 

  • Robins JM, Rotnitzky A (1992) Recovery of information and adjustment for dependent censoring using surrogate markers. In: AIDS epidemiology, methodological issues. Bikhäuser

  • Robins JM, Rotnitzky A, Zhao LP (1994) Estimation of regression coefficients when some regressors are not always observed. J Am Stat Assoc 89(427):846–866

    Article  MathSciNet  MATH  Google Scholar 

  • Rotnitzky A, Robins JM (2005) Inverse probability weighting in survival analysis. Encycl Biostat. https://doi.org/10.1002/0470011815.b2a11040

  • Rotnitzky A, Lei Q, Sued M, Robins JM (2012) Improved double-robust estimation in missing data and causal inference models. Biometrika 99(2):439–456

    Article  MathSciNet  MATH  Google Scholar 

  • Royston P, Parmar MKB (2011) The use of restricted mean survival time to estimate the treatment effect in randomized clinical trials when the proportional hazards assumption is in doubt. Stat Med 30(19):2409–2421

    Article  MathSciNet  Google Scholar 

  • Rubin DB (1987) Multiple imputation for nonresponse in surveys. Wiley, New York

    Book  MATH  Google Scholar 

  • Scharfstein DO, Rotnitzky A, Robins JM (1999) Adjusting for nonignorable drop-out using semiparametric nonresponse models: Rejoinder. J Am Stat Assoc 94(448):1135–1146. ISSN 01621459

  • Schemper M (1992) Cox analysis of survival data with non-proportional hazard functions. The Statistician 41(4):455–465

    Article  Google Scholar 

  • Stitelman OM, De Gruttola V, van der Laan MJ (2012) A general implementation of TMLE for longitudinal data applied to causal inference in survival analysis. Int J Biostat 8(1):1–39

    Article  MathSciNet  Google Scholar 

  • Tan Z (2006) A distributional approach for causal inference using propensity scores. J Am Stat Assoc 101(476):1619–1637

    Article  MathSciNet  MATH  Google Scholar 

  • Tan Z (2010) Bounded, efficient and doubly robust estimation with inverse weighting. Biometrika 97(3):661–682

    Article  MathSciNet  MATH  Google Scholar 

  • Tian L, Zhao L, Wei LJ (2014) Predicting the restricted mean event time with the subject’s baseline covariates in survival analysis. Biostatistics 15(2):222–233. https://doi.org/10.1093/biostatistics/kxt050

    Article  Google Scholar 

  • Tsiatis AA, Davidian M, Zhang M, Lu X (2008) Covariate adjustment for two-sample treatment comparisons in randomized clinical trials: a principled yet flexible approach. Stat Med 27(23):4658–4677

    Article  MathSciNet  Google Scholar 

  • van der Laan MJ (2014) Targeted estimation of nuisance parameters to obtain valid statistical inference. Int J Biostat 10(1):29–57

    MathSciNet  Google Scholar 

  • van der Laan M, Gruber S (2016) One-step targeted minimum loss-based estimation based on universal least favorable one-dimensional submodels. Int J Biostat 12(1):351–378

    Article  MathSciNet  Google Scholar 

  • van der Laan MJ, Robins JM (2003) Unified methods for censored longitudinal data and causality. Springer, New York

    Book  MATH  Google Scholar 

  • van der Laan MJ, Rubin D (2006) Targeted maximum likelihood learning. Int J Biostat 2(1):1–38

    MathSciNet  Google Scholar 

  • van der Laan MJ, Polley E, Hubbard A (2007) Super learner. Stat Appl Genet Mol Biol 6(25):Article 25

  • van der Vaart AW (1998) Asymptotic statistics. Cambridge University Press, Cambridge

    Book  MATH  Google Scholar 

  • Wellner JA, Zhan Y (1996) Bootstrapping z-estimators. University of Washington Department of Statistics Technical Report, 308

  • Williamson EJ, Forbes A, White IR (2014) Variance reduction in randomised trials by inverse probability weighting using the propensity score. Stat Med 33(5):721–737

    Article  MathSciNet  Google Scholar 

  • Wolpert DH (1992) Stacked generalization. Neural Netw 5(2):241–259

    Article  Google Scholar 

  • Xie J, Liu C (2005) Adjusted Kaplan-Meier estimator and log-rank test with inverse probability of treatment weighting for survival data. Stat Med 24(20):3089–3110

    Article  MathSciNet  Google Scholar 

  • Zhang M (2014) Robust methods to improve efficiency and reduce bias in estimating survival curves in randomized clinical trials. Lifetime Data Anal 21(1):119–137. https://doi.org/10.1007/s10985-014-9291-y

    Article  MathSciNet  MATH  Google Scholar 

  • Zhang M, Tsiatis AA, Davidian M (2008) Improving efficiency of inferences in randomized clinical trials using auxiliary covariates. Biometrics 64(3):707–715

    Article  MathSciNet  MATH  Google Scholar 

  • Zhao L, Tian L, Uno H, Solomon SD, Pfeffer MA, Schindler JS, Wei LJ (2012) Utilizing the integrated difference of two survival functions to quantify the treatment contrast for designing, monitoring, and analyzing a comparative clinical study. Clin Trials 9(5):570–577

    Article  Google Scholar 

  • Zhao L, Claggett B, Tian L, Uno H, Pfeffer MA, Solomon SD, Trippa L, Wei LJ (2016) On the restricted mean survival time curve in survival analysis. Biometrics 72(1):215–221. https://doi.org/10.1111/biom.12384, ISSN 1541-0420

Download references

Acknowledgements

Funding was provided by Patient-Centered Outcomes Research Institute (Grant No. ME-1306-03198), U.S. Food and Drug Administration (US) (Grant No. HHSF223201400113C) and National Institute of Neurological Disorders and Stroke (US) (Grant No. U01NS062851).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Iván Díaz.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Proofs for the main results in the paper.

R functions to compute the proposed estimator.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Díaz, I., Colantuoni, E., Hanley, D.F. et al. Improved precision in the analysis of randomized trials with survival outcomes, without assuming proportional hazards. Lifetime Data Anal 25, 439–468 (2019). https://doi.org/10.1007/s10985-018-9428-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10985-018-9428-5

Keywords

Navigation