Skip to main content
Log in

Concentration-Dependent Regulation of TiAl6V4 Particles on the Osteogenesis Potential of Human Bone Marrow Mesenchymal Stem Cells

  • Published:
Biological Trace Element Research Aims and scope Submit manuscript

Abstract

Total joint replacement is one of the most effective treatments for osteoarthritis, while the aseptic loosening of artificial joint is a major complication leading to the joint replacement failure. There are very limited studies about the effects of titanium-alloy particles on the osteogenic differentiation of mesenchymal stem cells. In this study, human bone marrow-derived mesenchymal stem cells (BM-hMSCs) were treated with different concentrations of TiAl6V4 particles. The cell viability was detected by MTT assay, and the cell proliferation was assessed by CKK-8 assay. The early and late stages of osteogenic differentiation were determined by alkaline phosphatase (ALP) and Alizarin Red S (ARS) staining assays. The expression of osteogenic genes and proteins was analyzed by RT-PCR and Western blot. TiAl6V4 particles at high concentration 100 μg/ml inhibited the cell viability of BM-hMSCs. However, TiAl6V4 in the range of 5–50 μg/ml did not show effects neither on the cell viability nor on the cell proliferation of BM-hMSCs. TiAl6V4 particles showed concentration-dependent bidirectional regulations on BM-hMSC osteogenesis. Specifically, TiAl6V4 at 5 μg/ml promoted the osteogenesis of BM-hMSCs, which was suppressed by TiAl6V4 at 50 μg/ml. Further, mechanism study revealed that the regulation of TiAl6V4 on BM-hMSCs was related to Wnt signaling pathway. Given the potential of mesenchymal cells, our study suggested that the minimization of metal use would be an attractive strategy to reduce the joint replacement failure.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. McMinn DJ, Snell KI, Daniel J, Treacy RB, Pynsent PB, Riley RD (2012) Mortality and implant revision rates of hip arthroplasty in patients with osteoarthritis: registry based cohort study. BMJ 344:e3319. https://doi.org/10.1136/bmj.e3319

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Geetha M, Singh AK, Asokamani R, Gogia AK (2009) Ti based biomaterials, the ultimate choice for orthopaedic implants – a review. Prog Mater Sci 54:397–425. https://doi.org/10.1016/j.pmatsci.2008.06.004

    Article  CAS  Google Scholar 

  3. Niinimaki T, Junila J, Jalovaara P (2001) A proximal fixed anatomic femoral stem reduces stress shielding. Int Orthop 25:85–88

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Okazaki Y, Gotoh E (2005) Comparison of metal release from various metallic biomaterials in vitro. Biomaterials 26:11–21. https://doi.org/10.1016/j.biomaterials.2004.02.005

    Article  CAS  PubMed  Google Scholar 

  5. Kurtz SM, Lau E, Watson H, Schmier JK, Parvizi J (2012) Economic burden of periprosthetic joint infection in the United States. J Arthroplast 27:61–65.e61. https://doi.org/10.1016/j.arth.2012.02.022

    Article  Google Scholar 

  6. Berend KR, Lombardi AV Jr, Morris MJ, Bergeson AG, Adams JB, Sneller MA (2013) Two-stage treatment of hip periprosthetic joint infection is associated with a high rate of infection control but high mortality. Clin Orthop Relat Res 471:510–518. https://doi.org/10.1007/s11999-012-2595-x

    Article  PubMed  Google Scholar 

  7. Adeli B, Parvizi J (2012) Strategies for the prevention of periprosthetic joint infection. J Bone Joint Surg Br 94:42–46. https://doi.org/10.1302/0301-620x.94b11.30833

    Article  CAS  PubMed  Google Scholar 

  8. Goodman SB, Gibon E, Pajarinen J, Lin TH, Keeney M, Ren PG, Nich C, Yao Z, Egashira K, Yang F, Konttinen YT (2014) Novel biological strategies for treatment of wear particle-induced periprosthetic osteolysis of orthopaedic implants for joint replacement. J R Soc Interface 11:20130962. https://doi.org/10.1098/rsif.2013.0962

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Chikaura H, Nakashima Y, Fujiwara Y, Komohara Y, Takeya M, Nakanishi Y (2016) Effect of particle size on biological response by human monocyte-derived macrophages. Biosurface and Biotribology 2:18–25. https://doi.org/10.1016/j.bsbt.2016.02.003

    Article  Google Scholar 

  10. Goodman SB, Huie P, Song Y, Schurman D, Maloney W, Woolson S, Sibley R (1998) Cellular profile and cytokine production at prosthetic interfaces. Study of tissues retrieved from revised hip and knee replacements. J Bone Joint Surg Br 80:531–539

    Article  CAS  PubMed  Google Scholar 

  11. Ren PG, Irani A, Huang Z, Ma T, Biswal S, Goodman SB (2011) Continuous infusion of UHMWPE particles induces increased bone macrophages and osteolysis. Clin Orthop Relat Res 469:113–122. https://doi.org/10.1007/s11999-010-1645-5

    Article  PubMed  Google Scholar 

  12. Liu N, Meng J, Wang Z, Zhou G, Shi T, Zhao J (2016) Autophagy mediated TiAl(6)V(4) particle-induced peri-implant osteolysis by promoting expression of TNF-alpha. Biochem Biophys Res Commun 473:133–139. https://doi.org/10.1016/j.bbrc.2016.03.065

    Article  CAS  PubMed  Google Scholar 

  13. Wang Z, Deng Z, Gan J, Zhou G, Shi T, Wang Z, Huang Z, Qian H, Bao N, Guo T, Chen J, Zhang J, Liu F, Dong L, Zhao J (2017) TiAl6V4 particles promote osteoclast formation via autophagy-mediated downregulation of interferon-beta in osteocytes. Acta Biomater 48:489–498. https://doi.org/10.1016/j.actbio.2016.11.020

    Article  CAS  PubMed  Google Scholar 

  14. Wang R, Wang Z, Ma Y, Liu G, Shi H, Chen J, Dong L, Zhao J, Zhang J (2013) Particle-induced osteolysis mediated by endoplasmic reticulum stress in prosthesis loosening. Biomaterials 34:2611–2623. https://doi.org/10.1016/j.biomaterials.2013.01.025

    Article  CAS  PubMed  Google Scholar 

  15. Gallo J, Vaculova J, Goodman SB, Konttinen YT, Thyssen JP (2014) Contributions of human tissue analysis to understanding the mechanisms of loosening and osteolysis in total hip replacement. Acta Biomater 10:2354–2366. https://doi.org/10.1016/j.actbio.2014.02.003

    Article  PubMed  PubMed Central  Google Scholar 

  16. Okazaki Y, Rao S, Tateishi T, Ito Y (1998) Cytocompatibility of various metal and development of new titanium alloys for medical implants. Mater Sci Eng A 243:250–256. https://doi.org/10.1016/S0921-5093(97)00809-5

    Article  Google Scholar 

  17. Kulkarni M, Mazare A, Gongadze E, Perutkova S, Kralj-Iglic V, Milosev I, Schmuki P, Iglic A, Mozetic M (2015) Titanium nanostructures for biomedical applications. Nanotechnology 26:062002. https://doi.org/10.1088/0957-4484/26/6/062002

    Article  CAS  PubMed  Google Scholar 

  18. Xu J, Weng XJ, Wang X, Huang JZ, Zhang C, Muhammad H, Ma X, Liao QD (2013) Potential use of porous titanium-niobium alloy in orthopedic implants: preparation and experimental study of its biocompatibility in vitro. PLoS One 8:e79289. https://doi.org/10.1371/journal.pone.0079289

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Berglund IS, Dirr EW, Ramaswamy V, Allen JB, Allen KD, Manuel MV (2018) The effect of mg-ca-Sr alloy degradation products on human mesenchymal stem cells. J Biomed Mater Res B Appl Biomater 106:697–704. https://doi.org/10.1002/jbm.b.33869

    Article  CAS  PubMed  Google Scholar 

  20. Yu WL, Sun TW, Qi C, Zhao HK, Ding ZY, Zhang ZW, Sun BB, Shen J, Chen F, Zhu YJ, Chen DY, He YH (2017) Enhanced osteogenesis and angiogenesis by mesoporous hydroxyapatite microspheres-derived simvastatin sustained release system for superior bone regeneration. Sci Rep 7:44129. https://doi.org/10.1038/srep44129

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Holt G, Murnaghan C, Reilly J, Meek RM (2007) The biology of aseptic osteolysis. Clin Orthop Relat Res 460:240–252. https://doi.org/10.1097/BLO.0b013e31804b4147

    Article  CAS  PubMed  Google Scholar 

  22. Raggatt LJ, Partridge NC (2010) Cellular and molecular mechanisms of bone remodeling. J Biol Chem 285:25103–25108. https://doi.org/10.1074/jbc.R109.041087

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Long F (2011) Building strong bones: molecular regulation of the osteoblast lineage. Nat Rev Mol Cell Biol 13:27–38. https://doi.org/10.1038/nrm3254

    Article  CAS  PubMed  Google Scholar 

  24. Sethe S, Scutt A, Stolzing A (2006) Aging of mesenchymal stem cells. Ageing Res Rev 5:91–116. https://doi.org/10.1016/j.arr.2005.10.001

    Article  CAS  PubMed  Google Scholar 

  25. Dominici M, Le Blanc K, Mueller I, Slaper-Cortenbach I, Marini F, Krause D, Deans R, Keating A, Prockop D, Horwitz E (2006) Minimal criteria for defining multipotent mesenchymal stromal cells. The International Society for Cellular Therapy position statement. Cytotherapy 8:315–317. https://doi.org/10.1080/14653240600855905

    Article  CAS  PubMed  Google Scholar 

  26. Jiao L, Cao DP, Qin LP, Han T, Zhang QY, Zhu Z, Yan F (2009) Antiosteoporotic activity of phenolic compounds from Curculigo orchioides. Phytomedicine 16:874–881. https://doi.org/10.1016/j.phymed.2009.01.005

    Article  CAS  PubMed  Google Scholar 

  27. Lehtovirta L, Reito A, Parkkinen J, Peraniemi S, Vepsalainen J, Eskelinen A (2018) Association between periprosthetic tissue metal content, whole blood and synovial fluid metal ion levels and histopathological findings in patients with failed metal-on-metal hip replacement. PLoS One 13:e0197614. https://doi.org/10.1371/journal.pone.0197614

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Huang W, Yang S, Shao J, Li YP (2007) Signaling and transcriptional regulation in osteoblast commitment and differentiation. Front Biosci 12:3068–3092

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Peng Y, Kang Q, Cheng H, Li X, Sun MH, Jiang W, Luu HH, Park JY, Haydon RC, He TC (2003) Transcriptional characterization of bone morphogenetic proteins (BMPs)-mediated osteogenic signaling. J Cell Biochem 90:1149–1165. https://doi.org/10.1002/jcb.10744

    Article  CAS  PubMed  Google Scholar 

  30. Lin GL, Hankenson KD (2011) Integration of BMP, Wnt, and notch signaling pathways in osteoblast differentiation. J Cell Biochem 112:3491–3501. https://doi.org/10.1002/jcb.23287

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Day TF, Guo X, Garrett-Beal L, Yang Y (2005) Wnt/beta-catenin signaling in mesenchymal progenitors controls osteoblast and chondrocyte differentiation during vertebrate skeletogenesis. Dev Cell 8:739–750. https://doi.org/10.1016/j.devcel.2005.03.016

    Article  CAS  PubMed  Google Scholar 

  32. Hu H, Hilton MJ, Tu X, Yu K, Ornitz DM, Long F (2005) Sequential roles of hedgehog and Wnt signaling in osteoblast development. Development 132:49–60. https://doi.org/10.1242/dev.01564

    Article  CAS  PubMed  Google Scholar 

  33. Shtutman M, Zhurinsky J, Simcha I, Albanese C, D'Amico M, Pestell R, Ben-Ze'ev A (1999) The cyclin D1 gene is a target of the beta-catenin/LEF-1 pathway. Proc Natl Acad Sci U S A 96:5522–5527

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Funding

The study was supported by the Science and Technology Program of Nantong (MS12017001-7).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zhiming Cui.

Ethics declarations

Conflicts of Interest

The authors declare that they have no conflict of interest.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hong, H., Xu, G., Deng, H. et al. Concentration-Dependent Regulation of TiAl6V4 Particles on the Osteogenesis Potential of Human Bone Marrow Mesenchymal Stem Cells. Biol Trace Elem Res 195, 445–453 (2020). https://doi.org/10.1007/s12011-019-01885-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12011-019-01885-2

Keywords

Navigation