Skip to main content
Log in

Frequency-dependent responses of neuronal models to oscillatory inputs in current versus voltage clamp

  • Original Article
  • Published:
Biological Cybernetics Aims and scope Submit manuscript

Abstract

Action potential generation in neurons depends on a membrane potential threshold and therefore on how subthreshold inputs influence this voltage. In oscillatory networks, for example, many neuron types have been shown to produce membrane potential (\(V_\mathrm{m}\)) resonance: a maximum subthreshold response to oscillatory inputs at a nonzero frequency. Resonance is usually measured by recording \(V_\mathrm{m}\) in response to a sinusoidal current (\(I_\mathrm{app}\)), applied at different frequencies (f), an experimental setting known as current clamp (I-clamp). Several recent studies, however, use the voltage clamp (V-clamp) method to control \(V_\mathrm{m}\) with a sinusoidal input at different frequencies [\(V_\mathrm{app}(f)\)] and measure the total membrane current (\(I_\mathrm{m}\)). The two methods obey systems of differential equations of different dimensionality, and while I-clamp provides a measure of electrical impedance [\(Z(f) = V_\mathrm{m}(f) / I_\mathrm{app}(f)\)], V-clamp measures admittance [\(Y(f) = I_\mathrm{m}(f) / V_\mathrm{app}(f)\)]. We analyze the relationship between these two measurement techniques. We show that, despite different dimensionality, in linear systems the two measures are equivalent: \(Z = Y^{-1}\). However, nonlinear model neurons produce different values for Z and \(Y^{-1}\). In particular, nonlinearities in the voltage equation produce a much larger difference between these two quantities than those in equations of recovery variables that describe activation and inactivation kinetics. Neurons are inherently nonlinear, and notably, with ionic currents that amplify resonance, the voltage clamp technique severely underestimates the current clamp response. We demonstrate this difference experimentally using the PD neurons in the crab stomatogastric ganglion. These findings are instructive for researchers who explore cellular mechanisms of neuronal oscillations.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  • Art JJ, Crawford AC, Fettiplace R (1986) Electrical resonance and membrane currents in turtle cochlear hair cells. Hear Res 22:31–36

    Article  CAS  PubMed  Google Scholar 

  • Beatty J, Song SC, Wilson CJ (2015) Cell-type-specific resonances shape the response of striatal neurons to synaptic inputs. J Neurophysiol 113:688–700

    Article  PubMed  Google Scholar 

  • Boehlen A, Heinemann U, Erchova I (2010) The range of intrinsic frequencies represented by medial entorhinal cortex stellate cells extends with age. J Neurosci 30:4585–4589

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Boehlen A, Henneberger C, Heinemann U, Erchova I (2013) Contribution of near-threshold currents to intrinsic oscillatory activity in rat medial entorhinal cortex layer II stellate cells. J Neurophysiol 109:445–463

    Article  PubMed  Google Scholar 

  • Brunel N, Hakim V, Richardson MJ (2003) Firing-rate resonance in a generalized integrate-and-fire neuron with subthreshold resonance. Phys Rev E 67:051916

    Article  CAS  Google Scholar 

  • Chen Y, Li X, Rotstein HG, Nadim F (2016) Membrane potential resonance frequency directly influences network frequency through gap junctions. J Neurophysiol 116:1554–1563

    Article  PubMed  PubMed Central  Google Scholar 

  • D’Angelo E, Nieus T, Maffei A, Armano S, Rossi P, Taglietti V, Fontana A, Naldi G (2001) Theta-frequency bursting and resonance in cerebellar granule cells: experimental evidence and modeling of a slow K\(^{+} \)-dependent mechanism. J Neurosci 21:759–770

    Article  PubMed  Google Scholar 

  • D’Angelo E, Koekkoek SKE, Lombardo P, Solinas S, Ros E, Garrido J, Schonewille M, De Zeeuw CI (2009) Timing in the cerebellum: oscillations and resonance in the granular layer. Neuroscience 162:805–815

    Article  CAS  PubMed  Google Scholar 

  • DeFelice LJ, Adelman WJ, Clapham EE, Mauro A (1981) Second order admittance in squid axon. In: Adelman WJ, Goldman DE (eds) The biophysical approach to excitable systems. Plenum Publishing Corp., New York, pp 37–63

    Chapter  Google Scholar 

  • Engel TA, Schimansky-Geier L, Herz AV, Schreiber S, Erchova I (2008) Subthreshold membrane-potential resonances shape spike-train patterns in the entorhinal cortex. J Neurophysiol 100:1576–1588

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Erchova I, Kreck G, Heinemann U, Herz AVM (2004) Dynamics of rat entorhinal cortex layer II and III cells: characteristics of membrane potential resonance at rest predict oscillation properties near threshold. J Physiol 560:89–110

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Fox DM, Tseng H, Smolinski TG, Rotstein HG, Nadim F (2017) Mechanisms of generation of membrane potential resonance in a neuron with multiple resonant ionic currents. PLoS Comput Biol 13(6):e1005565

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Gastrein P, Campanac E, Gasselin C, Cudmore RH, Bialowas A, Carlier E, Fronzaroli-Molinieres L, Ankri N, Debanne D (2011) The role of hyperpolarization-activated cationic current in spike-time precision and intrinsic resonance in cortical neurons in vitro. J Physiol 589:3753–3773

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Golowasch J, Marder E (1992) Proctolin activates an inward current whose voltage dependence is modified by extracellular ca\(^{2+}\). J Neurosci 12(3):810–817

    Article  CAS  PubMed  Google Scholar 

  • Gutfreund Y, Yarom Y, Segev I (1995) Subthreshold oscillations and resonant frequency in guinea pig cortical neurons: physiology and modeling. J Physiol 483:621–640

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Haas JS, White JA (2002) Frequency selectivity of layer II stellate cells in the medial entorhinal cortex. J Neurophysiol 88:2422–2429

    Article  PubMed  Google Scholar 

  • Heys JG, Giacomo LM, Hasselmo ME (2010) Cholinergic modulation of the resonance properties of stellate cells in layer II of the medial entorhinal. J Neurophysiol 104:258–270

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Heys JG, Schultheiss NW, Shay CF, Tsuno Y, Hasselmo ME (2012) Effects of acetylcholine on neuronal properties in entorhinal cortex. Front Behav Neurosci 6:32

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Higgs MH, Spain WJ (2009) Conditional bursting enhances resonant firing in neocortical layer 2–3 pyramidal neurons. J Neurosci 29:1285–1299

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hodgkin AL, Huxley AF (1952a) A quantitative description of membrane current and its application to conductance and excitation in nerve. J Physiol 117:500–544

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hodgkin AL, Huxley AF (1952b) Currents carried by sodium and potassium ions through the membrane of the giant axon of loligo. J Physiol 116:449–472

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hu H, Vervaeke K, Storm JF (2002) Two forms of electrical resonance at theta frequencies generated by M-current, h-current and persistent Na\(^{+}\) current in rat hippocampal pyramidal cells. J Physiol 545(3):783–805

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hu H, Vervaeke K, Graham JF, Storm LJ (2009) Complementary theta resonance filtering by two spatially segregated mechanisms in CA1 hippocampal pyramidal neurons. J Neurosci 29:14472–14483

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hutcheon B, Yarom Y (2000) Resonance, oscillations and the intrinsic frequency preferences in neurons. Trends Neurosci 23:216–222

    Article  CAS  PubMed  Google Scholar 

  • Hutcheon B, Miura RM, Puil E (1996) Subthreshold membrane resonance in neocortical neurons. J Neurophysiol 76:683–697

    Article  CAS  PubMed  Google Scholar 

  • Johnston D, Wu SM-S (1995) Foundations of cellular neurophysiology. The MIT Press, Cambridge

    Google Scholar 

  • Lampl I, Yarom Y (1997) Subthreshold oscillations and resonant behaviour: two manifestations of the same mechanism. Neuroscience 78:325–341

    Article  CAS  PubMed  Google Scholar 

  • Lau T, Zochowski M (2011) The resonance frequency shift, pattern formation, and dynamical network reorganization via sub-threshold input. PLoS ONE 6:e18983

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Li X, Bucher D, Nadim F (2018) Distinct co-modulation rules of synapses and voltage-gated currents coordinate interactions of multiple neuromodulators. J Neurosci 38(40):8549–8562

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Llinás RR, Yarom Y (1986) Oscillatory properties of guinea pig olivary neurons and their pharmacological modulation: an in vitro study. J Physiol 376:163–182

    Article  PubMed  PubMed Central  Google Scholar 

  • Magnani C, Moore LE (2011) Quadratic sinusoidal analysis of voltage clamped neurons. J Comput Neurosci 31:595–607

    Article  PubMed  Google Scholar 

  • Marcelin B, Becker A, Migliore M, Esclapez M, Bernard C (2009) H channel-dependent deficit of theta oscillation resonance and phase shift in temporal lobe epilepsy. Neurobiol Dis 33:436–447

    Article  CAS  PubMed  Google Scholar 

  • Matsumoto-Makidono Y, Nakayama H, Yamasaki M, Miyazaki T, Kobayashi K, Watanabe M, Kano M, Sakimura K, Hashimoto K (2016) Ionic basis for membrane potential resonance in neurons of the inferior olive. Cell Rep 16:994–1004

    Article  CAS  PubMed  Google Scholar 

  • Mikiel-Hunter J, Kotak V, Rinzel J (2016) High-frequency resonance in the gerbil medial superior olive. PLoS Comput Biol 12:1005166

    Article  CAS  Google Scholar 

  • Moore LE, Fishman HM, Poussart JM (1980) Small-signal analysis of K\(^+\) conduction in squid axons. J Membr Biol 54:157–164

    Article  CAS  PubMed  Google Scholar 

  • Muresan R, Savin C (2007) Resonance or integration? Self-sustained dynamics and excitability of neural microcircuits. J Neurophysiol 97:1911–1930

    Article  PubMed  Google Scholar 

  • Narayanan R, Johnston D (2007) Long-term potentiation in rat hippocampal neurons is accompanied by spatially widespread changes in intrinsic oscillatory dynamics and excitability. Neuron 56:1061–1075

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Narayanan R, Johnston D (2008) The h channel mediates location dependence and plasticity of intrinsic phase response in rat hippocampal neurons. J Neurosci 28:5846–5850

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Nolan MF, Dudman JT, Dodson PD, Santoro B (2007) HCN1 channels control resting and active integrative properties of stellate cells from layer II of the entorhinal cortex. J Neurosci 27:12440–12551

    Article  CAS  PubMed  Google Scholar 

  • Pike FG, Goddard RS, Suckling JM, Ganter P, Kasthuri N, Paulsen O (2000) Distinct frequency preferences of different types of rat hippocampal neurons in response to oscillatory input currents. J Physiol 529:205–213

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Rathour RK, Narayanan R (2012) Inactivating ion channels augment robustness of subthreshold intrinsic response dynamics to parametric variability in hippocampal model neurons. J Physiol 590:5629–5652

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Rathour RK, Narayanan R (2014) Homeostasis of functional maps in inactive dendrites emerges in the absence of individual channelostasis. Proc Natl Acad Sci USA 111:E1787–E1796

    Article  CAS  PubMed  Google Scholar 

  • Rau F, Clemens J, Naumov V, Hennig RM, Schreiber S (2015) Firing-rate resonances in the peripheral auditory system of the cricket, gryllus bimaculatus. J Comput Physiol 201:1075–1090

    Article  Google Scholar 

  • Remme WH, Donato R, Mikiel-Hunter J, Ballestero JA, Foster S, Rinzel J, McAlpine D (2014) Subthreshold resonance properties contribute to the efficient coding of auditory spatial cues. Proc Natl Acad Sci USA 111:E2339–E2348

    Article  CAS  PubMed  Google Scholar 

  • Richardson MJE, Brunel N, Hakim V (2003) From subthreshold to firing-rate resonance. J Neurophysiol 89:2538–2554

    Article  PubMed  Google Scholar 

  • Rotstein HG (2014) Frequency preference response to oscillatory inputs in two-dimensional neural models: a geometric approach to subthreshold amplitude and phase resonance. J Math Neurosci 4:11

    Article  PubMed  PubMed Central  Google Scholar 

  • Rotstein HG (2015) Subthreshold amplitude and phase resonance in models of quadratic type: nonlinear effects generated by the interplay of resonant and amplifying currents. J Comput Neurosci 38:325–354

    Article  PubMed  Google Scholar 

  • Rotstein HG (2017a) Spiking resonances in models with the same slow resonant and fast amplifying currents but different subthreshold dynamic properties. J Comput Neurosci 43:243–271

    Article  PubMed  Google Scholar 

  • Rotstein HG (2017b) The shaping of intrinsic membrane potential oscillations: positive/negative feedback, ionic resonance/amplification, nonlinearities and time scales. J Comput Neurosci 42:133–166

    Article  PubMed  Google Scholar 

  • Rotstein HG (2017c) Resonance modulation, annihilation and generation of antiresonance and antiphasonance in 3d neuronal systems: interplay of resonant and amplifying currents with slow dynamics. J Comput Neurosci 43:35–63

    Article  PubMed  Google Scholar 

  • Rotstein HG, Nadim F (2014) Frequency preference in two-dimensional neural models: a linear analysis of the interaction between resonant and amplifying currents. J Comput Neurosci 37:9–28

    Article  PubMed  Google Scholar 

  • Schreiber S, Erchova I, Heinemann U, Herz AV (2004) Subthreshold resonance explains the frequency-dependent integration of periodic as well as random stimuli in the entorhinal cortex. J Neurophysiol 92:408–415

    Article  PubMed  Google Scholar 

  • Sciamanna G, Wilson CJ (2011) The ionic mechanism of gamma resonance in rat striatal fast-spiking neurons. J Neurophysiol 106:2936–2949

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Solinas S, Forti L, Cesana E, Mapelli J, De Schutter E, D’Angelo E (2007) Fast-reset of pacemaking and theta-frequency resonance in cerebellar Golgi cells: simulations of their impact in vivo. Front Cell Neurosci 1:4

    Article  PubMed  PubMed Central  Google Scholar 

  • Song SC, Beatty JA, Wilson CJ (2016) The ionic mechanism of membrane potential oscillations and membrane resonance in striatal its interneurons. J Neurophysiol 116:1752–1764

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Swensen AM, Marder E (2001) Modulators with convergent cellular actions elicit distinct circuit outputs. J Neurosci 21(11):4050–4058

    Article  CAS  PubMed  Google Scholar 

  • Tohidi V, Nadim F (2009) Membrane resonance in bursting pacemaker neurons of an oscillatory network is correlated with network frequency. J Neurosci 29(20):6427–6435

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Tseng H, Nadim F (2010) The membrane potential waveform of bursting pacemaker neurons is a predictor of their preferred frequency and the network cycle frequency. J Neurosci 30(32):10809–10819

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Turnquist AGR, Rotstein HG (2018) Quadratization: from conductance-based models to caricature models with parabolic nonlinearities. In: Jaeger D, Jung R (eds) Encyclopedia of computational neuroscience. Springer, New York

    Google Scholar 

  • van Brederode JFM, Berger AJ (2008) Spike-firing resonance in hypoglossal motoneurons. J Neurophysiol 99:2916–2928

    Article  PubMed  PubMed Central  Google Scholar 

  • Wang XJ (2010) Neurophysiological and computational principles of cortical rhythms in cognition. Physiol Rev 90:1195–1268

    Article  PubMed  PubMed Central  Google Scholar 

  • Wu N, Hsiao C-F, Chandler SH (2001) Membrane resonance and subthreshold membrane oscillations in mesencephalic V neurons: participants in burst generation. J Neurosci 21:3729–3739

    Article  CAS  PubMed  Google Scholar 

  • Yang S, Lin W, Feng AA (2009) Wide-ranging frequency preferences of auditory midbrain neurons: roles of membrane time constant and synaptic properties. Eur J Neurosci 30:76–90

    Article  PubMed  Google Scholar 

  • Zemankovics R, Káli S, Paulsen O, Freund TF, Hájos N (2010) Differences in subthreshold resonance of hippocampal pyramidal cells and interneurons: the role of h-current and passive membrane characteristics. J Physiol 588:2109–2132

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

This work was partially supported by the National Science Foundation Grants DMS-1313861 and DMS-1608077 and National Institutes of Health Grants MH060605 and NS083319.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Farzan Nadim.

Additional information

Communicated by Benjamin Lindner.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Appendices

Equivalence between the I-clamp impedance and the V-clamp admittance for linear systems

The I-clamp impedance and the V-clamp admittance are equivalent if the corresponding amplitudes are the reciprocal of one another and the corresponding phases have the same absolute value but different sign. Using the notation introduced in this paper, \( Z(\omega ) = Y^{-1}(\omega ) \) and \( \Phi (\omega ) = -\Psi (\omega ) \).

We illustrate this for the following linear system,

$$\begin{aligned} \left\{ \begin{array}{ll} V' = a V + b w_1 + \gamma w_2 + I,\\ w_1' = c V + d w_1, \\ w_2' = \alpha V + \beta w_2, \end{array} \right. \end{aligned}$$
(40)

where the “prime” sign represents the derivative with respect to time t and a, b, c, d, \( \alpha \), \(\beta \) and \( \gamma \) are constants satisfying the condition that the eigenvalues of the characteristic polynomial for (40) with a constant value of I have non-positive real part. System (40) has the structure of the linearized conductance-based models (Richardson et al. 2003; Rotstein 2017c) for the voltage (V) and two gating variables (\(w_1\) and \(w_2 \)).

We assume

$$\begin{aligned} I = A_I(\omega ) \mathrm{e}^{i \omega t} \quad \hbox {and}\quad V = A_V(\omega ) \mathrm{e}^{i \omega t}, \end{aligned}$$
(41)

where \( \omega \) is the frequency (a linear function of the input frequency f). In I-clamp \(A_I = A_\mathrm{in}\) and \( A_V = A_\mathrm{out} \), while in V-clamp \(A_I = A_\mathrm{out}\) and \( A_V = A_\mathrm{in} \). Typically, \( A_\mathrm{in} \) is independent of \( \omega \), but this need not be the case. Note that Eqs. (40) are forced 3D and 2D linear systems in I- and V-clamp, respectively.

The I-clamp impedance and the V-clamp admittance are defined as

$$\begin{aligned} \mathbf{Z}(\omega ) = \frac{A_V(\omega )}{A_I} \quad \hbox {and}\quad \mathbf{Y}(\omega ) = \frac{A_I(\omega )}{A_V}, \end{aligned}$$
(42)

respectively, where \( \mathbf{Z}\) and \( \mathbf{Y}\) are complex quantities with amplitude (Z and Y, respectively) and phase (\(\Phi \) and \( \Psi \), respectively).

Alternatively, in I-clamp

$$\begin{aligned} I = A_I \sin (\omega t) \quad \hbox {and} \quad V = A_V \sin (\omega t - \Phi ), \end{aligned}$$
(43)

and in V-clamp

$$\begin{aligned} V= A_V \sin (\omega t) \quad \hbox {and} \quad I = A_I \sin (\omega t - \Psi ), \end{aligned}$$
(44)

where \( A_I \) and \( A_{V} \) are real quantities. According to this formulation, \( A_I = A_\mathrm{in} \) and \( A_V = Z(\omega ) = | \mathbf{Z}(\omega )| \ \) in I-clamp and \( A_I = Y(\omega ) = | \mathbf{Y}(\omega )|\) and \( A_V = A_\mathrm{in} \) in V-clamp.

The particular solutions (neglecting transients) of the second and third equations in (40) are given, respectively, by

$$\begin{aligned} w_1 = - \frac{c}{d-i \omega } V \quad \hbox {and} \quad w_2 = -\frac{\alpha }{\beta -i \omega } V. \end{aligned}$$
(45)

Substituting (45) into the first equation in (40) and rearranging terms yield

$$\begin{aligned} V' - a V - I - F(\omega ) V = 0, \end{aligned}$$
(46)

where

$$\begin{aligned} F(\omega ) = - \frac{(b c \beta + \alpha \gamma d) - i \omega (b c + \alpha \gamma )}{(d b - \omega ^2) - i \omega (d + \beta )}. \end{aligned}$$
(47)

Substituting (41) into (46) gives the condition

$$\begin{aligned} i \omega - a - F(\omega ) = \frac{A_I(\omega )}{A_V(\omega )}. \end{aligned}$$
(48)

Therefore,

$$\begin{aligned} \frac{1}{\mathbf{Z}(\omega )} = \mathbf{Y}(\omega ) \end{aligned}$$
(49)

and

$$\begin{aligned} Z(\omega ) = Y(\omega )^{-1} \quad \hbox {and} \quad \Phi (\omega ) = -\Psi (\omega ). \end{aligned}$$
(50)

Solutions to oscillatory forced linear ODEs

1.1 A system of two forced ODEs

Any system of ODEs of the form

$$\begin{aligned} \left\{ \begin{array}{ll} v' = a v + b w + F(t),\\ w' = c v + d w + G(t), \end{array} \right. \end{aligned}$$
(51)

can be written as

$$\begin{aligned} v'' - \eta v' + \Delta v = -d F(t) + b G(t) + F'(t), \end{aligned}$$
(52)

where

$$\begin{aligned} \eta = a + d \quad \hbox {and} \quad \Delta = a d - b c. \end{aligned}$$
(53)

If F(t) and G(t) are linear combinations of sinusoidal and cosinusoidal function of the same frequency (\(k \omega \)), there is the right-hand side of Eq. (52). Therefore, it suffices to solve

$$\begin{aligned} v'' - \eta v' + \Delta v = \alpha \sin (k \omega t) + \beta \cos (k \omega t). \end{aligned}$$
(54)

The solution of Eq. (54) is given by

$$\begin{aligned} v(t) = A \sin (k \omega t) + B \cos (k \omega t), \end{aligned}$$
(55)

where

$$\begin{aligned}&A = \frac{\alpha (\Delta - k^2 \omega ^2) - \beta \eta k \omega }{W(k \omega )} \quad \hbox {and} \quad \nonumber \\&B = \frac{\alpha \eta k \omega + \beta (\Delta - k^2 \omega ^2)}{W(k \omega )}, \end{aligned}$$
(56)

with

$$\begin{aligned} W(k \omega ) = (\Delta - k^2 \omega ^2)^2 + \eta ^2 k^2 \omega ^2. \end{aligned}$$
(57)

This solution satisfies

$$\begin{aligned} A^2 + B^2 = \frac{\alpha ^2 + \beta ^2}{W(k \omega )}. \end{aligned}$$
(58)

1.2 A single forced ODE

The solution to any ODE of the form

$$\begin{aligned} w' - d w = \alpha \sin (k \omega t) + \beta \cos (k \omega t) \end{aligned}$$
(59)

is given by

$$\begin{aligned} w(t) = C \sin (k \omega t) + D \cos (k \omega t), \end{aligned}$$
(60)

where

$$\begin{aligned} C = \frac{-\alpha d + \beta k \omega }{W_0(k \omega )} \quad \hbox {and} \quad D = -\frac{\alpha k \omega + \beta d}{W_0(k \omega )}, \end{aligned}$$
(61)

with

$$\begin{aligned} W_0(k \omega ) = d^2 + k^2 \omega ^2. \end{aligned}$$
(62)

This solution satisfies

$$\begin{aligned} C^2 + D^2 = \frac{\alpha ^2 + \beta ^2}{W_0(k \omega )}. \end{aligned}$$
(63)

Linear systems receiving oscillatory inputs in I-clamp and V-clamp

1.1 A linear system in I-clamp

System (51) with \( F(t) = A_\mathrm{in} \sin (\omega t) \) and \( G(t) = 0 \) can be written as

$$\begin{aligned} v'' - \eta v' + \Delta v = -A_\mathrm{in} d\ \sin (\omega t) + A_\mathrm{in} \omega \cos (\omega t), \end{aligned}$$
(64)

whose solution is given by (“Appendix B.1”)

$$\begin{aligned} v(t) = A_0(\omega ) \sin (\omega t) + B_0(\omega ) \cos (\omega t), \end{aligned}$$
(65)

where

$$\begin{aligned}&A_0(\omega ) = -\frac{d (\Delta - \omega ^2) + \eta \omega ^2}{W(\omega )} A_\mathrm{in} \quad \hbox {and} \quad \nonumber \\&B_0(\omega ) = \frac{-d \eta \omega + \omega (\Delta - \omega ^2)}{W(\omega )} A_\mathrm{in} , \end{aligned}$$
(66)

with \( W(\omega )\) given by (57) with \( k = 1 \). From (58)

$$\begin{aligned} A_0(\omega )^2 + B_0(\omega )^2 = \frac{d^2 + \omega ^2}{W(\omega )} A_\mathrm{in}^2 = Z(\omega )^2 A_\mathrm{in}^2. \end{aligned}$$
(67)

1.2 A linear system in V-clamp

System (51) with \( F(t) = I \), \( v(t) = A_\mathrm{in} \sin (\omega t) \) and \( G(t) = 0 \) can be written as

$$\begin{aligned} \left\{ \begin{array}{ll} w' - d w = A_\mathrm{in} c \sin (\omega t), \\ I = A_\mathrm{in} \omega \cos (\omega t) - A_\mathrm{in} a \sin (\omega t) - b w. \end{array} \right. \end{aligned}$$
(68)

The solution to the first equation in (68) is given by (“Appendix B.2”)

$$\begin{aligned} w(t) = - A_\mathrm{in} \frac{d c}{W_0(\omega )} \sin (\omega t) - A_\mathrm{in} \frac{\omega c}{W_0(\omega )} \cos (\omega t), \end{aligned}$$
(69)

with \( W_0(\omega )\) given by (62) with \( k = 1 \). Substitution into the second equation in (68) yields

$$\begin{aligned} I = C_0 \sin (\omega t) + D_0 \cos (\omega t), \end{aligned}$$
(70)

where

$$\begin{aligned} C_0(\omega )= & {} \left( \frac{d b c}{W_0(\omega )} - a \right) A_\mathrm{in} \quad \hbox {and} \quad \nonumber \\&D_0(\omega ) = \left( \frac{\omega b c}{W_0(\omega )} + \omega \right) A_\mathrm{in}. \end{aligned}$$
(71)

It can be shown that these constants satisfy

$$\begin{aligned} C_0(\omega )^2 + D_0(\omega )^2= & {} \frac{( \Delta - \omega ^2)^2 + \eta ^2 \omega ^2}{W_0(\omega )} A_\mathrm{in}^2\nonumber \\= & {} \frac{W(\omega )}{d^2 + \omega ^2} A_\mathrm{in}^2 \nonumber \\= & {} \frac{A_\mathrm{in}^2}{ Z(\omega )^2} = Y(\omega )^2 A_\mathrm{in}^2. \end{aligned}$$
(72)

1.3 A linearized conductance-based model in I-clamp

The solution to systems (1)–(2) with \( I(t) = A_\mathrm{in} \sin (\omega t) \) (I-clamp) is given by (“Appendix D”)

$$\begin{aligned} v(t) = A(\omega ) \sin (\omega t) + B(\omega ) \cos (\omega t), \end{aligned}$$
(73)

where

$$\begin{aligned}&A(\omega ) = \frac{\tau ^{-1} (\Delta - \omega ^2) - \eta \omega ^2}{W(\omega )} A_\mathrm{in} \quad \hbox {and} \quad \nonumber \\&B(\omega ) = \frac{\tau ^{-1} \eta \omega + \omega (\Delta -\omega ^2)}{W(\omega )} A_\mathrm{in}, \end{aligned}$$
(74)

with

$$\begin{aligned}&\Delta = \frac{g_\mathrm{L}+g}{\tau }, \quad \eta = - \frac{1+g_\mathrm{L} \tau }{\tau } \quad \hbox {and} \quad \nonumber \\&W(\omega ) = (\Delta - \omega ^2)^2 + \eta ^2 \omega ^2. \end{aligned}$$
(75)

From (58),

$$\begin{aligned} Z(\omega ) = \sqrt{\frac{A(\omega )^2 + B(\omega )^2}{A_\mathrm{in}}} = \sqrt{\frac{\tau ^{-2} + \omega ^2}{W(\omega )}} \frac{1}{A_\mathrm{in}}. \end{aligned}$$
(76)

1.4 A linearized conductance-based model in V-clamp

If, instead, we assume that \( v(t) = A_\mathrm{in} \sin (\omega t) \) (V-clamp), then the solution to Eq. (2) is given by (“Appendix D”)

$$\begin{aligned} w(t) = A_\mathrm{in} \frac{\tau ^{-2}}{W_0(\omega )} \sin (\omega t) - A_\mathrm{in} \frac{\omega \tau ^{-1}}{W_0(\omega )} \cos (\omega t), \end{aligned}$$
(77)

with

$$\begin{aligned} W_0(\omega ) = \tau ^{-2} + \omega ^2. \end{aligned}$$
(78)

Substitution into the second equation in (68) yields

$$\begin{aligned} I = C(\omega ) \sin (\omega t) + D(\omega ) \cos (\omega t), \end{aligned}$$
(79)

where

$$\begin{aligned}&C(\omega ) = \left[ \frac{g \tau ^{-2}}{W_0(\omega )} + g_\mathrm{L} \right] A_\mathrm{in} \quad \hbox {and} \quad \nonumber \\&D(\omega ) = \left[ -\frac{\omega g \tau ^{-1}}{W_0(\omega )} + \omega \right] A_\mathrm{in}. \end{aligned}$$
(80)

It can be easily shown that

$$\begin{aligned} C(\omega )^2 + D(\omega )^2= & {} \frac{( \Delta - \omega ^2)^2 + \eta ^2 \omega ^2}{W_0(\omega )} A_\mathrm{in}^2 \nonumber \\= & {} \frac{W(\omega )}{\tau ^{-2} + \omega ^2} A_\mathrm{in}^2 \nonumber \\= & {} \frac{A_\mathrm{in}^2}{ Z(\omega )^2} = Y(\omega )^2 A_\mathrm{in}^2. \end{aligned}$$
(81)

Weakly nonlinear forced systems of ODEs in I- and V-clamp: asymptotic approach

1.1 Oscillatory input in I-clamp

We consider the following weakly perturbed system of ODEs

$$\begin{aligned} \left\{ \begin{array}{ll} v' = a v + b w + \epsilon \sigma _v v^2 + I_\mathrm{in}(t), \\ w' = c v + d w + \epsilon \sigma _v v^2, \end{array} \right. \end{aligned}$$
(82)

where

$$\begin{aligned} I_\mathrm{in}(t) = A_\mathrm{in} \sin (\omega t) \end{aligned}$$
(83)

and \( \epsilon \) is assumed to be small. We expand the solutions of (82) in series of \( \epsilon \)

$$\begin{aligned}&v(t) = v_0(t) + \epsilon v_1(t) + \mathcal{O}(\epsilon ^2) \quad \hbox {and} \quad \nonumber \\&w(t) = w_0(t) + \epsilon w_1(t) + \mathcal{O}(\epsilon ^2). \end{aligned}$$
(84)

Substituting into (82) and collecting the terms with the same powers of \( \epsilon \), we obtain the following systems for the \( \mathcal{O}(1)\) and \( \mathcal{O}(\epsilon ) \) orders, respectively,

$$\begin{aligned} \left\{ \begin{array}{ll} v_0' = a v_0 + b w_0 + A_\mathrm{in} \sin (\omega t), \\ w_0' = c v_0 + d w_0, \end{array} \right. \end{aligned}$$
(85)

and

$$\begin{aligned} \left\{ \begin{array}{ll} v_1' = a v_1 + b w_1 + \sigma _v v_0^2, \\ w_1' = c v_1 + d w_1 + \sigma _w v_0^2. \end{array} \right. \end{aligned}$$
(86)

Solution to the \(\mathcal{O}(1)\)system

The solution to system (85) is given in “Appendix C.1” with v substituted by \( v_0 \).

Solution to the \(\mathcal{O}(\epsilon )\) system

System (86) can be rewritten as

$$\begin{aligned} v_1'' - \eta v_1' + \Delta v_1= & {} -\sigma _v d v_0^2(t) + \sigma _w b v_0^2(t) \nonumber \\&+ 2 \sigma _v v_0(t) v_0'(t), \end{aligned}$$
(87)

where

$$\begin{aligned} v_0^2(t)= & {} \frac{A_0(\omega )^2+B_0(\omega )^2}{2} + \frac{B_0(\omega )^2-A_0(\omega )^2}{2} \cos (2 \omega t)\nonumber \\&+ A_0(\omega ) B_0(\omega ) \sin (2 \omega t). \end{aligned}$$
(88)

The solution to (87) is given (“Appendix B.1”) by

$$\begin{aligned} v_1(t)= & {} \frac{A_0(\omega )^2+B_0(\omega )^2}{2 \Delta } ( -\sigma _v d + \sigma _w b) \nonumber \\&+ A_1(\omega ) \sin (2 \omega t) + B_1(\omega ) \cos (2 \omega t), \end{aligned}$$
(89)

where

$$\begin{aligned} A_1(\omega )= & {} \frac{\alpha _1(\omega ) (\Delta - 4 \omega ^2) - 2 \beta _1(\omega ) \eta \omega }{W(2 \omega )} \quad \hbox {and} \quad \nonumber \\&B_1(\omega ) = \frac{2 \alpha _1(\omega ) \eta \omega +\beta _1(\omega ) (\Delta - 4 \omega ^2) }{W(2 \omega )}, \end{aligned}$$
(90)

with \( W(2 \omega )\) given by (57) with \( k = 2 \),

$$\begin{aligned} \alpha _1(\omega ) = \sigma _v [ -d A_0 B_0 - \omega (B_0^2-A_0^2) ] + \sigma _w b A_0 B_0, \end{aligned}$$
(91)

and

$$\begin{aligned} \beta _1(\omega )= & {} \sigma _v [ -d (B_0^2-A_0^2)/2 + 2 \omega A_0 B_0 ] \nonumber \\&+ \sigma _w b (B_0^2-A_0^2)/2. \end{aligned}$$
(92)

1.2 Oscillatory input in V-clamp

We consider the following weakly perturbed system of ODEs

$$\begin{aligned} \left\{ \begin{array}{ll} v' = a v + b w + \epsilon \sigma _x v^2 + I, \\ w' = c v + d w + \epsilon \sigma _y v^2. \end{array} \right. \end{aligned}$$
(93)

where

$$\begin{aligned} v = v_\mathrm{in}(t) = A_\mathrm{in} \sin (\omega t) \end{aligned}$$
(94)

and \( \epsilon \) is assumed to be small. We expand the solutions of (93) in series of \( \epsilon \)

$$\begin{aligned}&w(t) = w_0(t) + \epsilon w_1(t) + \mathcal{O}(\epsilon ^2) \quad \hbox {and} \quad \nonumber \\&I(t) = I_0(t) + \epsilon I_1(t) + \mathcal{O}(\epsilon ^2). \end{aligned}$$
(95)

Substituting into (93) and collecting the terms with the same powers of \( \epsilon \) we obtain the following systems for the \( \mathcal{O}(1)\) and \( \mathcal{O}(\epsilon ) \) orders, respectively,

$$\begin{aligned} \left\{ \begin{array}{ll} w_0' - d w_0 = A_\mathrm{in} c \sin (\omega t), \\ I_0 = A_\mathrm{in} \omega \cos (\omega t) - A_\mathrm{in} a \sin (\omega t) - b w_0, \end{array} \right. \end{aligned}$$
(96)

and

$$\begin{aligned} \left\{ \begin{array}{ll} w_1' - d w_1 = \sigma _w A_\mathrm{in}^2 [1 - \cos (2 \omega t )] / 2, \\ I_1 = - b w_1 - \sigma _v A_\mathrm{in}^2 [1 - \cos (2 \omega t )] / 2. \end{array} \right. \end{aligned}$$
(97)

Solution to the\(\mathcal{O}(1)\)system

The solution to system (96) is given in “Appendix C.2” with w and I and substituted by \( w_0 \) and \(I_0\), respectively.

Solution to the \(\mathcal{O}(\epsilon )\) system

The solution to the first equation in (97) is given by (“Appendix B.2”)

$$\begin{aligned} w_1(t)= & {} -\frac{\sigma _w A_\mathrm{in}^2}{2 d} - \frac{\sigma _w \omega A_\mathrm{in}^2}{W_0(2 \omega )} \sin (2\, \omega t) \nonumber \\&+ \frac{\sigma _w d A_\mathrm{in}^2}{2 W_0(2 \omega )} \cos (2 \omega \, t), \end{aligned}$$
(98)

with \( W_0(2\, \omega )\) given by (62) with \( k = 2 \). Substitution into the second equation in (97) yields

$$\begin{aligned} I_1= & {} -\left( \sigma _v - \frac{b}{d}\, \sigma _w \right) \, \frac{A_\mathrm{in}^2}{2} + C_1(\omega )\, \sin (2\, \omega \, t) \nonumber \\&+ D_1(\omega )\, \cos (2\, \omega \, t), \end{aligned}$$
(99)

where

$$\begin{aligned}&C_1(\omega ) = \sigma _w\, \frac{b\, \omega }{W_0(2\, \omega )}\, A_\mathrm{in}^2, \quad \hbox {and} \quad \nonumber \\&D_1(\omega ) = \left( \sigma _v - \sigma _w\, \frac{b\, d}{W_0(2\, \omega )} \right) \, \frac{A_\mathrm{in}^2}{2}. \end{aligned}$$
(100)

Asymptotic formulas for large values of \( \tau \)

1.1 Impedance zeroth-order approximation in I-clamp

For large enough values of \( \tau \), the coefficients of the solutions to the linear system (16) satisfy \( A_0(\omega ) = \mathcal{O}(1) \) and \( B_0(\omega ) = \mathcal{O}(1) \), and

$$\begin{aligned} A_0(\omega ) = \frac{1}{1 + \omega ^2} A_\mathrm{in}, \quad \quad B_0(\omega ) = -\frac{\omega }{(1 + \omega ^2)}A_\mathrm{in}, \end{aligned}$$
(101)

and

$$\begin{aligned} Z_0(\omega ) = \frac{\sqrt{A_0(\omega )^2+B_0(\omega )^2}}{A_\mathrm{in}} = \sqrt{\frac{1}{1+\omega ^2}}. \end{aligned}$$
(102)

We begin with Eqs. (74) and (75) and assume all other parameter values are \( \mathcal{O}(1) \). For large enough values of \( \tau \), these quantities behave as follows

$$\begin{aligned}&\Delta = \frac{1}{\tau }, \quad \eta = - \left( \frac{1}{\tau }+1 \right) \quad \hbox {and} \quad \nonumber \\&W(\omega ) = \left( \frac{1}{\tau } - \omega ^2\right) ^2 + \left( \frac{1}{\tau }+1 \right) ^2\, \omega ^2, \end{aligned}$$
(103)

and

$$\begin{aligned}&A_0(\omega ) = \frac{ (\tau ^{-1} - \omega ^2) + (1+\tau )\, \omega ^2}{\tau \, W(\omega )}\, A_\mathrm{in} \quad \hbox {and} \quad \nonumber \\&B_0(\omega ) = \frac{-(\tau ^{-1}+1)\, \omega + \omega \, (1 -\tau \, \omega ^2)}{\tau \, W(\omega )}\, A_\mathrm{in}, \end{aligned}$$
(104)

where

$$\begin{aligned} \tau \, W(\omega ) = \left( \frac{\tau ^{1/2}}{\tau } - \tau ^{1/2} \omega ^2\right) ^2 + \left( \frac{\tau ^{1/2}}{\tau }+\tau ^{1/2} \right) ^2\, \omega ^2, \end{aligned}$$

which can be reduced to

$$\begin{aligned} \tau \, W(\omega ) = \tau \, \omega ^4 + \tau \, \omega ^2. \end{aligned}$$

Substituting into (104) and rearranging terms yields (101) and 102.

1.2 Admittance first-order approximation in V-clamp

For large enough values of \( \tau \)

$$\begin{aligned} C_1(\omega ) = 0 \quad \hbox {and} \quad D_1(\omega ) = \sigma _v\, \frac{A_\mathrm{in}^2}{2}. \end{aligned}$$
(105)

From (36), this implies that

$$\begin{aligned} Y_1(\omega ) = \sigma _v\, \frac{A_\mathrm{in}^2}{2}. \end{aligned}$$
(106)

We begin with Eqs. (37) for \( C_1(\omega ) \) and \( D_1(\omega ) \) and Eq. (62) with \( k = 2 \) and \( d = -\tau ^{-1}\) for \( W_0(2\, \omega ) \). Multiplication of the latter by \(\tau \) and \( \tau ^2 \) yields, respectively,

$$\begin{aligned}&\tau \, W_0(2\, \omega ) = \frac{1}{\tau } + 4 \tau \, \omega ^2 \quad \hbox {and} \quad \nonumber \\&\tau ^2\, W_0(2\, \omega ) = 1+ 4 \tau ^2\, \omega ^2. \end{aligned}$$
(107)

For large values of \( \tau \)

$$\begin{aligned}&\frac{1}{\tau \, W_0(2\, \omega )} = \frac{1}{ \frac{1}{\tau } + 4 \tau \, \omega ^2} = \mathcal{O}(\tau ^{-1}) \quad \hbox {and} \quad \nonumber \\&\frac{1}{\tau ^2\, W_0(2\, \omega )} = \frac{1}{1+ 4 \tau ^2\, \omega ^2} = \mathcal{O}(\tau ^{-2}). \end{aligned}$$

Therefore, for large enough values of \( \tau \) in (37) we obtain (105).

1.3 Impedance first-order approximation in I-clamp

For large enough values of \( \tau \),

$$\begin{aligned} Z_1(\omega ) = \sigma _v\, \frac{1}{2 \sqrt{1+4 \omega ^2}} \frac{1}{1 + \omega ^2}. \end{aligned}$$
(108)

From (24) and (25) and the fact that \( A_0(\omega ) = \mathcal{O}(1) \) and \( B_0(\omega ) = \mathcal{O}(1) \) (“Appendix E.1”), it follows that for large enough values of \( \tau \)

$$\begin{aligned}&\alpha _1(\omega ) = -\sigma _v\,\omega \, [ B_0(\omega )^2-A_0(\omega )^2] \quad \hbox {and} \quad \nonumber \\&\beta _1(\omega ) = \sigma _v\, [ 2\, \omega \, A_0(\omega )\, B_0(\omega )\, ]. \end{aligned}$$
(109)

Substituting into (22) and rearranging terms, we obtain

$$\begin{aligned} Z_1(\omega )^2 = \sigma _v^2\, \omega ^2 \frac{[ B_0(\omega )^2+A_0(\omega )^2]^2}{W(2\, \omega )}\, \frac{1}{A_\mathrm{in}^2}. \end{aligned}$$
(110)

From (103) (and large enough values of \( \tau \)),

$$\begin{aligned} W(2 \omega ) = 16\, \omega ^4 + 4\, \omega ^2. \end{aligned}$$
(111)

Substituting (111) and (101) into (110), we obtain (108).

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Rotstein, H.G., Nadim, F. Frequency-dependent responses of neuronal models to oscillatory inputs in current versus voltage clamp. Biol Cybern 113, 373–395 (2019). https://doi.org/10.1007/s00422-019-00802-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00422-019-00802-z

Keywords

Navigation