Skip to main content
Log in

Guanosine and GMP increase the number of granular cerebellar neurons in culture: dependence on adenosine A2A and ionotropic glutamate receptors

  • Original Article
  • Published:
Purinergic Signalling Aims and scope Submit manuscript

Abstract

The guanine-based purines (GBPs) have essential extracellular functions such as modulation of glutamatergic transmission and trophic effects on neurons and astrocytes. We previously showed that GBPs, such as guanosine-5′-monophosphate (GMP) or guanosine (GUO), promote the reorganization of extracellular matrix proteins in astrocytes, and increase the number of neurons in a neuron-astrocyte co-culture protocol. To delineate the molecular basis underlying these effects, we isolated cerebellar neurons in culture and treated them with a conditioned medium derived from astrocytes previously exposed to GUO or GMP (GBPs-ACM) or, directly, with GUO or GMP. Agreeing with the previous studies, there was an increase in the number of β-tubulin III-positive neurons in both conditions, compared with controls. Interestingly, the increase in the number of neurons in the neuronal cultures treated directly with GUO or GMP was more prominent, suggesting a direct interaction of GBPs on cerebellar neurons. To investigate this issue, we assessed the role of adenosine and glutamate receptors and related intracellular signaling pathways after GUO or GMP treatment. We found an involvement of A2A adenosine receptors, ionotropic glutamate N-methyl-D-aspartate (NMDA), and non-NMDA receptors in the increased number of cerebellar neurons. The signaling pathways extracellular-regulated kinase (ERK), calcium-calmodulin-dependent kinase-II (CaMKII), protein kinase C (PKC), phosphatidilinositol-3′-kinase (PI3-K), and protein kinase A (PKA) are also potentially involved with GMP and GUO effect. Such results suggest that GMP and GUO, and molecules released in GBPs-ACM promote the survival or maturation of primary cerebellar neurons or both via interaction with adenosine and glutamate receptors.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Abbreviations

ACM:

Astrocytic-conditioned medium

A1R:

Adenosine A1 receptors

A2AR:

Adenosine A2A receptors

AMPA:

α-Amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid

CaMKII:

Calcium-calmodulin dependent kinase-II

Chel:

Chelerythrine

DIP:

Dipyridamole

DPCPX:

1,3-Dipropyl-8-cyclopentylxanthine

ECM:

Extracellular matrix proteins

ERK:

Extracellular-regulated kinase

GAMS:

c-d-Glutamylaminomethylsulphonic acid

GBPs-ACM:

Guanine-based purines-astrocytic-conditioned medium

GMP:

Guanosine-5′-monophosphate

GUO:

Guanosine

iGluRs:

Ionotropic glutamate receptors

MK-801:

(+)-5-Methyl-10,11-dihydro-5H-dibenzo[a,d]cyclohepten-5,10-iminemaleate

MTT:

3-(4,5-Dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide

NMDA:

N-methyl-D-aspartate

8-PT:

8-Phenyltheophylline

PI3-K:

Phosphatidilinositol-3′-kinase

PKA:

Protein kinase A

PKC:

Protein kinase C

Wort:

Wortmannin

ZM24138:

4-(2-[7-Amino-2-(2-furyl)[1,2,4]triazolo[2,3-a][1,3,5]triazin-5-ylamino]ethyl)phenol

References

  1. Neary JT et al (1996) Trophic actions of extracellular nucleotides and nucleosides on glial and neuronal cells. Trends Neurosci 19(1):13–18

    CAS  PubMed  Google Scholar 

  2. Rathbone MP, Middlemiss PJ, Gysbers JW, Andrew C, Herman MAR, Reed JK, Ciccarelli R, di Iorio P, Caciagli F (1999) Trophic effects of purines in neurons and glial cells. Prog Neurobiol 59(6):663–690

    CAS  PubMed  Google Scholar 

  3. Lanznaster D, Dal-Cim T, Piermartiri TCB, Tasca CI (2016) Guanosine: a neuromodulator with therapeutic potential in brain disorders. Aging Dis 7(5):657–679

    PubMed  PubMed Central  Google Scholar 

  4. Ciccarelli R, di Iorio P, Giuliani P, D'Alimonte I, Ballerini P, Caciagli F, Rathbone MP (1999) Rat cultured astrocytes release guanine-based purines in basal conditions and after hypoxia/hypoglycemia. Glia 25(1):93–98

    CAS  PubMed  Google Scholar 

  5. Zimmermann H, Zebisch M, Strater N (2012) Cellular function and molecular structure of ecto-nucleotidases. Purinergic Signal 8(3):437–502

    CAS  PubMed  PubMed Central  Google Scholar 

  6. Middlemiss PJ, Gysbers JW, Rathbone MP (1995) Extracellular guanosine and guanosine-5′-triphosphate increase: NGF synthesis and release from cultured mouse neopallial astrocytes. Brain Res 677(1):152–156

    CAS  PubMed  Google Scholar 

  7. Quincozes-Santos A, Bobermin LD, de Souza DG, Bellaver B, Gonçalves CA, Souza DO (2013) Gliopreventive effects of guanosine against glucose deprivation in vitro. Purinergic Signal 9(4):643–654

    CAS  PubMed  PubMed Central  Google Scholar 

  8. Dal-Cim T, Ludka FK, Martins WC, Reginato C, Parada E, Egea J, López MG, Tasca CI (2013) Guanosine controls inflammatory pathways to afford neuroprotection of hippocampal slices under oxygen and glucose deprivation conditions. J Neurochem 126(4):437–450

    CAS  PubMed  Google Scholar 

  9. Schmidt AP, Lara DR, Souza DO (2007) Proposal of a guanine-based purinergic system in the mammalian central nervous system. Pharmacol Ther 116(3):401–416

    CAS  PubMed  Google Scholar 

  10. Dal-Cim T, Martins WC, Thomaz DT, Coelho V, Poluceno GG, Lanznaster D, Vandresen-Filho S, Tasca CI (2016) Neuroprotection promoted by guanosine depends on glutamine synthetase and glutamate transporters activity in hippocampal slices subjected to oxygen/glucose deprivation. Neurotox Res 29(4):460–468

    CAS  PubMed  Google Scholar 

  11. Molz S, Dal-Cim T, Budni J, Martín-de-Saavedra MD, Egea J, Romero A, del Barrio L, Rodrigues ALS, López MG, Tasca CI (2011) Neuroprotective effect of guanosine against glutamate-induced cell death in rat hippocampal slices is mediated by the phosphatidylinositol-3 kinase/Akt/glycogen synthase kinase 3beta pathway activation and inducible nitric oxide synthase inhibition. J Neurosci Res 89(9):1400–1408

    CAS  PubMed  Google Scholar 

  12. Dal-Cim T, Martins WC, Santos ARS, Tasca CI (2011) Guanosine is neuroprotective against oxygen/glucose deprivation in hippocampal slices via large conductance Ca(2)+-activated K+ channels, phosphatidilinositol-3 kinase/protein kinase B pathway activation and glutamate uptake. Neuroscience 183:212–220

    CAS  PubMed  Google Scholar 

  13. Ciruela F (2013) Guanosine behind the scene. J Neurochem 126(4):425–427

    CAS  PubMed  Google Scholar 

  14. Gysbers JW, Rathbone MP (1992) Guanosine enhances NGF-stimulated neurite outgrowth in PC12 cells. Neuroreport 3(11):997–1000

    CAS  PubMed  Google Scholar 

  15. Thauerer B, zur Nedden S, Baier-Bitterlich G (2010) Vital role of protein kinase C-related kinase in the formation and stability of neurites during hypoxia. J Neurochem 113(2):432–446

    CAS  PubMed  PubMed Central  Google Scholar 

  16. Albrecht P, Henke N, Tien MLT, Issberner A, Bouchachia I, Maher P, Lewerenz J, Methner A (2013) Extracellular cyclic GMP and its derivatives GMP and guanosine protect from oxidative glutamate toxicity. Neurochem Int 62(5):610–619

    CAS  PubMed  Google Scholar 

  17. Dal-Cim T, Molz S, Egea J, Parada E, Romero A, Budni J, Martín de Saavedra MD, Barrio L, Tasca CI, López MG (2012) Guanosine protects human neuroblastoma SH-SY5Y cells against mitochondrial oxidative stress by inducing heme oxigenase-1 via PI3K/Akt/GSK-3beta pathway. Neurochem Int 61(3):397–404

    CAS  PubMed  Google Scholar 

  18. Martinez R, Gomes FC (2005) Proliferation of cerebellar neurons induced by astrocytes treated with thyroid hormone is mediated by a cooperation between cell contact and soluble factors and involves the epidermal growth factor-protein kinase a pathway. J Neurosci Res 80(3):341–349

    CAS  PubMed  Google Scholar 

  19. Lipsky RH, Xu K, Zhu D, Kelly C, Terhakopian A, Novelli A, Marini AM (2001) Nuclear factor kappaB is a critical determinant in N-methyl-D-aspartate receptor-mediated neuroprotection. J Neurochem 78(2):254–264

    CAS  PubMed  Google Scholar 

  20. Böcklinger K, Tomaselli B, Heftberger V, Podhraski V, Bandtlow C, Baier-Bitterlich G (2004) Purine nucleosides support the neurite outgrowth of primary rat cerebellar granule cells after hypoxia. Eur J Cell Biol 83(2):51–54

    CAS  PubMed  Google Scholar 

  21. Decker H, Francisco SS, Mendes-de-Aguiar CBN, Romão LF, Boeck CR, Trentin AG, Moura-Neto V, Tasca CI (2007) Guanine derivatives modulate extracellular matrix proteins organization and improve neuron-astrocyte co-culture. J Neurosci Res 85(9):1943–1951

    CAS  PubMed  Google Scholar 

  22. Martinez R, Gomes FC (2002) Neuritogenesis induced by thyroid hormone-treated astrocytes is mediated by epidermal growth factor/mitogen-activated protein kinase-phosphatidylinositol 3-kinase pathways and involves modulation of extracellular matrix proteins. J Biol Chem 277(51):49311–49318

    CAS  PubMed  Google Scholar 

  23. Freire E et al (2002) Structure of laminin substrate modulates cellular signaling for neuritogenesis. J Cell Sci 115(Pt 24):4867–4876

    CAS  PubMed  Google Scholar 

  24. Thangnipon W et al (1983) Observations on rat cerebellar cells in vitro: influence of substratum, potassium concentration and relationship between neurones and astrocytes. Brain Res 313(2):177–189

    CAS  PubMed  Google Scholar 

  25. Wong EH, Kemp JA, Priestley T, Knight AR, Woodruff GN, Iversen LL (1986) The anticonvulsant MK-801 is a potent N-methyl-D-aspartate antagonist. Proc Natl Acad Sci U S A 83(18):7104–7108

    CAS  PubMed  PubMed Central  Google Scholar 

  26. Wilding TJ, Huettner JE (1996) Antagonist pharmacology of kainate- and alpha-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid-preferring receptors. Mol Pharmacol 49(3):540–546

    CAS  PubMed  Google Scholar 

  27. Holubowska A et al (2014) Genetic manipulation of cerebellar granule neurons in vitro and in vivo to study neuronal morphology and migration. J Vis Exp (85)

  28. Jha MK, Kim JH, Song GJ, Lee WH, Lee IK, Lee HW, An SSA, Kim SY, Suk K (2018) Functional dissection of astrocyte-secreted proteins: implications in brain health and diseases. Prog Neurobiol 162:37–69

    CAS  PubMed  Google Scholar 

  29. Brewer GJ, Torricelli JR, Evege EK, Price PJ (1993) Optimized survival of hippocampal neurons in B27-supplemented Neurobasal, a new serum-free medium combination. J Neurosci Res 35(5):567–576

    CAS  PubMed  Google Scholar 

  30. Traversa U, Bombi G, Camaioni E, Macchiarulo A, Costantino G, Palmieri C, Caciagli F, Pellicciari R (2003) Rat brain guanosine binding site. Biological studies and pseudo-receptor construction. Bioorg Med Chem 11(24):5417–5425

    CAS  PubMed  Google Scholar 

  31. Traversa U, Bombi G, Iorio PD, Ciccarelli R, Werstiuk ES, Rathbone MP (2002) Specific [(3)H]-guanosine binding sites in rat brain membranes. Br J Pharmacol 135(4):969–976

    CAS  PubMed  PubMed Central  Google Scholar 

  32. Volpini R, Marucci G, Buccioni M, Dal Ben D, Lambertucci C, Lammi C, Mishra RC, Thomas A, Cristalli G (2011) Evidence for the existence of a specific g protein-coupled receptor activated by guanosine. ChemMedChem 6(6):1074–1080

    CAS  PubMed  Google Scholar 

  33. Gysbers JW, Rathbone MP (1996) Neurite outgrowth in PC12 cells is enhanced by guanosine through both cAMP-dependent and -independent mechanisms. Neurosci Lett 220(3):175–178

    CAS  PubMed  Google Scholar 

  34. Bau C, Middlemiss PJ, Hindley S, Jiang S, Ciccarelli R, Caciagli F, DiIorio P, Werstiuk ES, Rathbone MP (2005) Guanosine stimulates neurite outgrowth in PC12 cells via activation of heme oxygenase and cyclic GMP. Purinergic Signal 1(2):161–172

    CAS  PubMed  PubMed Central  Google Scholar 

  35. Janssens N, Lesage AS (2001) Glutamate receptor subunit expression in primary neuronal and secondary glial cultures. J Neurochem 77(6):1457–1474

    CAS  PubMed  Google Scholar 

  36. Porciuncula LO et al (2002) Guanine based purines inhibit [(3)H]glutamate and [(3)H]AMPA binding at postsynaptic densities from cerebral cortex of rats. Brain Res 928(1–2):106–112

    CAS  PubMed  Google Scholar 

  37. Souza DO, Ramirez G (1991) Effects of guanine nucleotides on kainic acid binding and on adenylate cyclase in chick optic tectum and cerebellum. J Mol Neurosci 3(1):39–45

    CAS  PubMed  Google Scholar 

  38. Tasca CI, Cardoso LF, Souza DO (1999) Effects of guanine nucleotides on adenosine and glutamate modulation of cAMP levels in optic tectum slices from chicks. Neurochem Int 34(3):213–220

    CAS  PubMed  Google Scholar 

  39. Almeida RF, Comasseto DD, Ramos DB, Hansel G, Zimmer ER, Loureiro SO, Ganzella M, Souza DO (2017) Guanosine anxiolytic-like effect involves adenosinergic and glutamatergic neurotransmitter systems. Mol Neurobiol 54(1):423–436

    CAS  PubMed  Google Scholar 

  40. Ciruela F, Ferré S, Casadó V, Cortés A, Cunha RA, Lluis C, Franco R (2006) Heterodimeric adenosine receptors: a device to regulate neurotransmitter release. Cell Mol Life Sci 63(21):2427–2431

    CAS  PubMed  Google Scholar 

  41. Tasca CI, Lanznaster D, Oliveira KA, Fernández-Dueñas V, Ciruela F (2018) Neuromodulatory effects of guanine-based purines in health and disease. Front Cell Neurosci 12:376

    CAS  PubMed  PubMed Central  Google Scholar 

  42. Heftberger V, Tomaselli B, Podhraski V, Baier-Bitterlich G (2005) Purine nucleoside mediated protection of primary cerebellar granule cells after hypoxic insult. In: Focus on Neurochemistry Research. Nova Science Publishers, New York, p 255

  43. Matsumoto JP et al (2014) Protein kinase A mediates adenosine A2a receptor modulation of neurotransmitter release via synapsin I phosphorylation in cultured cells from medulla oblongata. Neurosci Res 85:1–11

    CAS  PubMed  Google Scholar 

  44. Ribeiro FF, Xapelli S, Miranda-Lourenço C, Tanqueiro SR, Fonseca-Gomes J, Diógenes MJ, Ribeiro JA, Sebastião AM (2016) Purine nucleosides in neuroregeneration and neuroprotection. Neuropharmacology 104:226–242

    CAS  PubMed  Google Scholar 

  45. Mendoza MC, Er EE, Blenis J (2011) The Ras-ERK and PI3K-mTOR pathways: cross-talk and compensation. Trends Biochem Sci 36(6):320–328

    CAS  PubMed  PubMed Central  Google Scholar 

  46. Giuliani P et al (2015) Guanosine protects glial cells against 6-hydroxydopamine toxicity. Adv Exp Med Biol 837:23–33

    PubMed  Google Scholar 

  47. D'Alimonte I et al (2007) Guanosine inhibits CD40 receptor expression and function induced by cytokines and beta amyloid in mouse microglia cells. J Immunol 178(2):720–731

    CAS  PubMed  Google Scholar 

  48. Oleskovicz SP et al (2008) Mechanism of guanosine-induced neuroprotection in rat hippocampal slices submitted to oxygen-glucose deprivation. Neurochem Int 52(3):411–418

    CAS  PubMed  Google Scholar 

  49. Bettio LE et al (2012) Guanosine produces an antidepressant-like effect through the modulation of NMDA receptors, nitric oxide-cGMP and PI3K/mTOR pathways. Behav Brain Res 234(2):137–148

    CAS  PubMed  Google Scholar 

  50. Bettio LE et al (2014) Guanosine prevents behavioral alterations in the forced swimming test and hippocampal oxidative damage induced by acute restraint stress. Pharmacol Biochem Behav 127:7–14

    CAS  PubMed  Google Scholar 

Download references

Funding

Research supported by grants from the Brazilian funding agencies: CAPES (Coordenação do Pessoal de Ensino Superior) – Project Procad-CAPES; and CAPES-PVE 052/2012; CNPq (Conselho Nacional de Desenvolvimento Científico e Tecnológico) – Projects IBN-Net # 01.06.0842-00 and INCT for Excitotoxicity and Neuroprotection; FAPESC (Fundação de Amparo à Pesquisa e Inovação do Estado de Santa Catarina) – Project NENASC. C.I.T. is recipient of CNPq productivity fellowship. All authors have materially participated in the research and/or article preparation.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Carla I. Tasca.

Ethics declarations

The procedures used in this study complied with the guidelines on animal care of the UFSC Ethics Committee on the Use of Animals (CEUA), which follow the Principles of laboratory animal care from NIH (2011).

Conflicts of interest

Helena Decker declares that she has no conflict of interest.

Tetsade C. B. Piermartiri declares that she has no conflict of interest.

Cláudia B. Nedel declares that she has no conflict of interest.

Luciana F. Romão declares that she has no conflict of interest.

Sheila S. Francisco declares that she has no conflict of interest.

Tharine Dal-Cim declares that she has no conflict of interest.

Carina R. Boeck declares that she has no conflict of interest.

Vivaldo Moura-Neto declares that he has no conflict of interest.

Carla I. Tasca declares that she has no conflict of interest.

Ethical approval

This article does not contain any studies with human participants or animals performed by any of the authors.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Decker, H., Piermartiri, T.C.B., Nedel, C.B. et al. Guanosine and GMP increase the number of granular cerebellar neurons in culture: dependence on adenosine A2A and ionotropic glutamate receptors. Purinergic Signalling 15, 439–450 (2019). https://doi.org/10.1007/s11302-019-09677-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11302-019-09677-y

Keywords

Navigation