Skip to main content
Log in

Site-specific integration of rotavirus VP6 gene in rabbit β-casein locus by CRISPR/Cas9 system

  • Published:
In Vitro Cellular & Developmental Biology - Animal Aims and scope Submit manuscript

Abstract

Rotavirus (RV) is the leading cause of viral gastroenteritis in neonates and VP6 protein has been discussed as a potential candidate vaccine. CRISPR/Cas9 was the latest generation of gene editing tools that can mediate the site-specific knock-in of exogenous genes, providing strong support for the expression of recombinant proteins. Here, seeking to design a rotavirus vaccine that would be suitable for both mammary-gland-based production and milk-based administration, rabbit β-casein (CSN2) locus was chosen as the target site to integrate the VP6 gene. The efficiency of inducing mutations in different target sites of rabbit CSN2 locus was analyzed and g4 site seems to be the best one to generate mutations (g4 72.76 ± 0.32% vs g1 30.14 ± 1.93%, g2 38.53 ± 0.75%, g3 52.26 ± 1.16%, P < 0.05). We further compared the knock-in efficiency through cytoplasmic injection of two group mixtures (containing 100 ng/μL Cas9 mRNA or Cas9 protein, 20 ng/μL sgRNA4, and 100 ng/μL donor vector) in rabbit zygotes, though the Cas9 mRNA group induced an HDR efficiency as high as 20.0% ± 2.6% than Cas9 protein group (10.3% ± 3.1%), 37.5% of the knock-in events were partial integration in the target site, when Cas9 protein used in the CRISPR/Cas9 system, all of the positive blastocysts showed completely integrated, results showed that the use of Cas9 protein is better than Cas9 mRNA to integrate the correct exogenous gene into the target site. Moreover, the transgenic rabbit that harbored correct integration of VP6 gene was obtained using Cas9 protein group and was used to produce an experimental milk-based rotavirus vaccine. Our research provides a novel strategy to produce rotavirus subunit vaccine and make a foundation for building broader milk-based vaccine protection against other pathogens.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.

Similar content being viewed by others

References

Download references

Acknowledgments

We acknowledge our friend Laiba Shafique for helping us in revising the manuscript.

Funding

The authors would like to thank National Natural Science Foundation (Grant No. 31860638) and Guangxi Natural Science Foundation (Grant No. AA17204051 and AB16380042).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Qingyou Liu or Deshun Shi.

Ethics declarations

Competing interests

The authors declare that they have no competing interests.

Additional information

Editor: Tetsuji Okamoto

Electronic supplementary material

ESM 1

(DOCX 25 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Li, H., Li, Z., Xiao, N. et al. Site-specific integration of rotavirus VP6 gene in rabbit β-casein locus by CRISPR/Cas9 system. In Vitro Cell.Dev.Biol.-Animal 55, 586–597 (2019). https://doi.org/10.1007/s11626-019-00382-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11626-019-00382-z

Keywords

Navigation