Skip to main content

Advertisement

Log in

Biodegradable magnesium alloys as temporary orthopaedic implants: a review

  • Published:
BioMetals Aims and scope Submit manuscript

Abstract

The study of innovative biodegradable implant materials is one of the most interesting research topics at the forefront in the area of biomaterials. Biodegradable implant materials in the human body can be gradually dissolved, absorbed, consumed or excreted, so there is no need for the secondary surgery to remove implants after the surgery regions have healed. However, most of the biodegradable materials, usually polymers, do not have good mechanical properties to be reliable for bearing the load of the body. Magnesium and its alloys due to the excellent biodegradability and biocompatibility as well as the suitable mechanical compatibility with human bone are very promising candidates for the development of temporary, degradable implants in load-bearing applications. However, Mg alloys are corrosion susceptible in a biological environment. Besides, the high corrosion rate and the low bioactivity of magnesium implants are the challenging problems, which need to be resolved before employing them in clinical applications. This paper provides a review of state-of-the-art of magnesium alloy implants for orthopedic and tissue engineering applications and describes recent progress in the design of novel structure design Mg alloys and potential approaches to improve their biodegradation performance.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  • Birbilis N, Ralston KD, Virtanen S, Fraser HL, Davies CHJ (2010) Grain character influences on corrosion of ECAPed pure magnesium. Corros Eng, Sci Technol 45(3):224–230

    Article  CAS  Google Scholar 

  • Bostman O, Viljanen J, Salminen S, Pihlajamaki H (2000) Response of articular cartilage and subchondral bone to internal fixation devices made of poly-L-lactide: a histomorphometric and microradiographic study on rabbits. Biomaterials 21:2553–2560

    Article  CAS  PubMed  Google Scholar 

  • Chen K, Dai J, Zhang X (2015) Improvement of corrosion resistance of magnesium alloys for biomedical applications. Corros Rev 33:101–117

    Article  CAS  Google Scholar 

  • Choudhary L, Raman RK (2012) Magnesium alloys as body implants: fracture mechanism under dynamic and static loadings in a physiological environment. Acta Biomater 8:916–923

    Article  CAS  PubMed  Google Scholar 

  • Choudhary L, Raman RKS (2013) Microstructure mechanical property and in vitro biocorrosion behavior of single-phase biodegradable Mg-1.5 Zn-0.6 Zr alloy. Eng Fract Mech 103:94–102

    Article  Google Scholar 

  • Clemow JT, Weinstein AM, Klawitter JJ, Koeneman J, Anderson J (1981) Interface mechanics of porous titanium implants. J Biomed Mater Res 15:73–82

    Article  CAS  PubMed  Google Scholar 

  • Daoud A, El-khair MTA, Abdel-Aziz M, Rohatgi P (2007) Fabrication, microstructure and compressive behavior of ZC63 Mg–microballoon foam composites. Compos Sci Technol 67:1842–1853

    Article  CAS  Google Scholar 

  • Davies JR (2003) Metallic materials in handbook of materials for medical devices. ASM International, Materials Park, pp 21–50

    Google Scholar 

  • Feng A, Han Y (2010) The microstructure, mechanical and corrosion properties of calcium polyphosphate reinforced ZK60A magnesium alloy composites. J Alloys Compds 504:585–593

    Article  CAS  Google Scholar 

  • Feng A, Han Y (2011) Mechanical and in vitro degradation behavior of ultrafine calcium polyphosphate reinforced magnesium-alloy composites. Mater Des 32:2813–2820

    Article  CAS  Google Scholar 

  • Frost HM (1989) The biology of fracture healing. An overview for clinicians. Part I. Clin Orthop Relat Res 248:283–293

    Google Scholar 

  • González S et al. (2013) Biodegradation and mechanical integrity of magnesium and magnesium alloys suitable for implants, Chapter 12

  • Gu XN, Zheng YF (2010) A review on magnesium alloys as biodegradable materials. Front Mater Sci China 4:111–115

    Article  Google Scholar 

  • Gu XN, Zhou W, Zheng Y, Cheng Y, Wei S, Zhong S, Xi TF, Chen LJ (2010a) Corrosion fatigue behaviors of two biomedical Mg alloys—AZ91D and WE43—in simulated body fluid. Acta Biomater 6:4605–4613

    Article  CAS  PubMed  Google Scholar 

  • Gu X, Zhou W, Zheng Y, Liu Y, Li Y (2010b) Degradation and cytotoxicity of lotus-type porous pure magnesium as potential tissue engineering scaffold material. Mater Lett 64:1871–1874

    Article  CAS  Google Scholar 

  • Gu XN, Zhou WR, Zheng YF, Dong LM, Xi YL, Chai DL (2010c) Microstructure, mechanical property, bio-corrosion and cytotoxicity evaluations of Mg/HA composites. Mater Sci Eng, C 30:827–832

    Article  CAS  Google Scholar 

  • Hiromoto S, Tomozawa M, Maruyama N (2013) Fatigue property of a bioabsorbabale magnesium alloy with a hydroxyapatite coating formed by a chemical solution deposition. J Mech Behav Biomed Mater 25:1–10

    Article  CAS  PubMed  Google Scholar 

  • Hornberger H, Virtanen S, Boccaccini AR (2012) Biomedical coatings on magnesium alloys—a review. Acta Biomater 8:2442–2455

    Article  CAS  PubMed  Google Scholar 

  • Hou LD, Li Z, Pan Y, Du L, Li XL, Zheng YF, Li L (2014) In vitro and in vivo studies on biodegradable magnesium alloy. Prog Nat Sci 24:466–471

    Article  CAS  Google Scholar 

  • Jacobs JJ, Gilbert JL, Urban RM (1998) Corrosion of metal orthopaedic implants. J Bone Joint Surg 80:268–282

    Article  CAS  PubMed  Google Scholar 

  • Jacobs JJ, Hallab NJ, Skipor AK, Urban RM (2003) Metal degradation products: a cause for concern in metal-metal bearings? Clin Orthop Relat Res 417:139–147

    Google Scholar 

  • Jafari S, Singh Raman RK, Davies CHJ (2015) Corrosion fatigue of a magnesium alloy in modified simulated body fluid. Eng Fract Mech 137:2–11

    Article  Google Scholar 

  • Jai Poinern GE, Brundavanam S, Fawcett D (2012) Biomedical magnesium alloys: a review of material properties, surface modifications and potential as a biodegradable orthopaedic implant. Am J Biomed Eng 2(6):218–240

    Article  Google Scholar 

  • Jang Y, Collins B, Sankar J, Yun Y (2013) Effect of biologically relevant ions on the corrosion products formed on alloy AZ31B: an improved understanding of magnesium corrosion. Acta Biomaterial 9:8761–8770

    Article  CAS  Google Scholar 

  • Jasmawati N, Djuansjah JRP, Kadir MRA, Sukmana I (2015) Porous magnesium scaffolds for bone implant applications: a review. Adv Mater Res 1125:437–440

    Article  Google Scholar 

  • Kannan MB (2010) Influence of microstructure on the in vitro degradation behaviour of magnesium alloy. Mater Lett 64:739–742

    Article  CAS  Google Scholar 

  • Kannan MB, Raman RKS (2008) Stress corrosion cracking of magnesium alloys. Scripta Mater 59:175–178

    Article  CAS  Google Scholar 

  • Kannan M, Raman R, Witte F, Blawert C, Dietzel W (2011) Influence of circumferential notch and fatigue crack on the mechanical integrity of biodegradable magnesium-based alloy in simulated body fluid. J Biomed Mater Res, Part B 96:303–309

    Article  CAS  Google Scholar 

  • Khanra AK, Jung HC, Hong KS, Shin KS (2010) Comparative property study on extruded Mg-HAP and ZM61-HAP composites. Mater Sci Eng, A 527:6283–6288

    Article  CAS  Google Scholar 

  • Kraus T, Fischerauer S, Hänzi A, Uggowitzer P, Löffler J, Weinberg AM (2012) Magnesium alloys for temporary implants in osteosynthesis: in vivo studies of their degradation and interaction with bone. Acta Biomateriala 8:1230–1238

    Article  CAS  Google Scholar 

  • Lefebvre LP, Banhart J, Dunand D (2008) Porous metals and metallic foams: current status and recent developments. Adv Eng Mater 10:775–787

    Article  CAS  Google Scholar 

  • Lhotka C, Szekeres T, Steffan I, Zhuber K, Zweymuller K (2003) Four-year study of cobalt and chromium blood levels in patients managed with two different metal-on-metal total hip replacements. J Orthop Res 21:189–195

    Article  CAS  PubMed  Google Scholar 

  • Li JP, Li SH, de Groot K, Layrolle P (2002) Macroporous biphasic calcium phosphate scaffold with high permeability/porosity ratio. Key Eng Mater 218:51–54

    Article  Google Scholar 

  • Li LC, Gao JC, Wang Y (2004) Evaluation of cyto-toxicity and corrosion behavior of alkali-heat-treated magnesium in simulated body fluid. Surf Coat Technol 185:92–98

    Article  CAS  Google Scholar 

  • Li JP, Li SH, van Blitterswijk CA, Groot K (2005) A novel porous Ti6A14 V: characterization and cell attachment. J Biomed Mater Res 73A:223–233

    Article  CAS  Google Scholar 

  • Li Z, Gu X, Lou S, Zheng Y (2008) The development of binary Mg-Ca alloys for use as biodegradable materials within bone. Biomaterials 29:1329–1344

    Article  CAS  PubMed  Google Scholar 

  • Lin X, Tan L, Wang Q, Zhang G, Zhang B, Yang K (2013) In vivo degradation and tissue compatibility of ZK60 magnesium alloy with micro-arc oxidation coating in a transcortical model. Mater Sci Eng C33:3881–3888

    Article  CAS  Google Scholar 

  • Lin X, Yang X, Tan L, Li M, Wang X, Zhang Y, Yang K, Hu Z, Qiu J (2014) In vitro degradationand biocompatibility of a strontium-containing micro-arc oxidation coating on the biodegradable ZK60 magnesium alloy. Appl Surf Sci 288:718–726

    Article  CAS  Google Scholar 

  • Liu LJ, Schlesinger M (2009) Corrosion of magnesium and its alloys. Corros Sci 51:1733–1737

    Article  CAS  Google Scholar 

  • Liu C, Zhao Y, Chen Y, Liu P, Cai K (2014) Surface modification of magnesium alloy via cathodic plasma electrolysis and its influence on corrosion resistance and cytocompatibility. Mater Lett 132:15–18

    Article  CAS  Google Scholar 

  • Lopez M, Pereda M, Valle J, Lorenzo M, Alonso M, Escudero M (2010) Corrosion behavior of AZ31 magnesium alloy with different grain sizes in simulated biological fluids. Acta Biomater 6:1763–1771

    Article  CAS  Google Scholar 

  • Mabuchi M, Kubota K, Higashi K (1995) High strength and high strain rate super plasticity in a Mg-Mg2Si composite. Scr Metall Mater 33:331–335

    Article  CAS  Google Scholar 

  • Maguire M, Cowan J (2002) Magnesium chemistry and biochemistry. Biometals 15:203–210

    Article  CAS  PubMed  Google Scholar 

  • Mao L, Yuana G, Niu J, Zong Y, Ding W (2013) In vitro degradation behavior and biocompatibility of Mg–Nd–Zn–Zr alloy byhydrofluoric acid treatment. Mater Sci Eng C33:242–250

    Article  CAS  Google Scholar 

  • Mueller WD, Nascimento ML, de Mele MFL (2010) Critical discussion of the results from different corrosion studies of Mg and Mg alloys for biomaterial applications. Acta Biomater 6:1749–1755

    Article  CAS  PubMed  Google Scholar 

  • Murray GA, Semple JC (1981) Transfer of tensile loads from a prosthesis to bone using porous titanium. J Bone Joint Surg 63B:138–141

    Article  Google Scholar 

  • Nagels J, Stokdijk M, Rozing PM (2003) Stress shielding and bone resorption in shoulder arthroplasty. J Shoulder Elbow Surg 12:35–39

    Article  PubMed  Google Scholar 

  • Ng WF, Chiu KY, Cheng FT (2010) Effect of ph on the in vitro corrosion rate of magnesium degradable implant material. Mater Sci Eng, C 30:898–903

    Article  CAS  Google Scholar 

  • Niinomi M, Nakai M, Hieda J (2012) Developement of new metallic alloys for biomedical applications. Acta Biomater 8:3888–3903

    Article  CAS  PubMed  Google Scholar 

  • Orlov D, Ralston KD, Birbilis N, Estrin Y (2011) Enhanced corrosion resistance of Mg alloy ZK60 after processing by integrated extrusion and equal channel angular pressing. Acta Mater 59(15):6176–6186

    Article  CAS  Google Scholar 

  • Pamula E, Bacakova L et al (2008) The influence of pore size on colonization of poly(L-lactide-glycolide) scaffolds with human osteoblast-like MG 63 cells in vitro. J Mater Sci 19:425–435

    CAS  Google Scholar 

  • Pamula E, Filová E, Bacáková L, Lisá V, Adamczyk D (2009) Resorbable polymeric scaffolds for bone tissue engineering: the influence of their microstructure on the growth of human osteoblast-like MG 63 cells. J Biomed Mater Res A89:432–443

    Article  CAS  Google Scholar 

  • Pan YK, Chen CZ, Wang DG, Zhao TG (2013) Effects of phosphates on microstructure and bioactivity of micro-arc oxidized calcium phosphate coating on Mg-Zn-Zr magnesium alloy. Colloids Surf B 109:1–9

    Article  CAS  Google Scholar 

  • Persaud-Sharma D, McGoron A (2012) Biodegradable magnesium alloys: a review of material development and applications. J Biomater Tissue Eng 12:25–39

    Article  CAS  Google Scholar 

  • Pu Z, Outeiro JC, Batista AC et al (2011) Surface integrity in dry and cryogenic machining of AZ31b Mg alloy with varying cutting edge radius tools. Procedia Eng 19:282–287

    Article  CAS  Google Scholar 

  • Radha R, Sreekanth D (2017) Insight of magnesium alloys and composites for orthopedic implant applications—a review. J Magnes Alloys 5:286–312

    Article  CAS  Google Scholar 

  • Ralston KD, Birbilis N (2010) Effect of grain size on corrosion: a review. Corros Sci 66(7):075005

    Article  Google Scholar 

  • Raman RKS, Choudhary L (2013) Cracking of magnesium-based biodegradable implant alloys under the combined action of stress and corrosive body fluid: a review. Emerg Mater Res 2:219–228

    Article  CAS  Google Scholar 

  • Razavi M, Fathi MH, Meratian M (2010a) Fabrication and characterization of magnesium-fluorapatite nanocomposite for biomedical applications. Mater Charact 61:1363–1370

    Article  CAS  Google Scholar 

  • Razavi M, Fathi MH, Meratian M (2010b) Microstructure, mechanical properties and bio-corrosion evaluation of biodegradable AZ91-FA nanocomposites for biomedical applications. Mater Sci Eng, A 527:6938–6944

    Article  CAS  Google Scholar 

  • Razavi M, Fathi M, Savabi O, Razavi S, Hashemi B, Vashaee D, Tayebi L (2013) Surface modification of magnesium alloy implants by nanostructured bredigite coating. Mater Lett 113:174–178

    Article  CAS  Google Scholar 

  • Rojaee R, Fathi M, Raeissi K (2013) Controlling the degradation rate of AZ91 magnesium alloy via sol-gel thin films as derived nanostructured hydroxyapatite coating. Mater Sci Eng C33:3817–3825

    Article  CAS  Google Scholar 

  • Rosalbino F, De Negri S, Scavino G et al (2013) Microstructure and in vitro degradation performance of Mg-Zn-Mn alloys for biomedical application. J Biomed Mater Res A101:704–711

    Article  CAS  Google Scholar 

  • Seal CK, Vince K, Hodgson MA (2009) Biodegradable surgical implants based on magnesium alloys—a review of current research. Mater Sci Eng 4:1–5

    Google Scholar 

  • Sha BA (2003) Corrosion resistance of magnesium alloys. ASM Handbook 13A, OH, USA

  • Sharma DP, McGoron A, Biomim J (2012) Biodegradable magnesium alloys: a review of material development and applications. Biomater Tissue Eng 12:25–39

    Article  CAS  Google Scholar 

  • Song G (2007) Control of biodegradation of biocompatible magnesium alloys. Corros Sci 49(4):1696–1701

    Article  CAS  Google Scholar 

  • Song GL, Atrens A (1999) Corrosion mechanisms of magnesium alloys. Adv Eng Mater 1:11–33

    Article  CAS  Google Scholar 

  • Song G, Song S (2007) A possible biodegradable magnesium implant material. Adv Eng Mater 9:298–302

    Article  CAS  Google Scholar 

  • Staiger MP, Pietaka AM, Huadmai J, Diasb G (2006) Magnesium and its alloys as orthopedic biomaterials: a review. Biomaterials 27:1728–1734

    Article  CAS  Google Scholar 

  • Tang YC, Katsuma S, Fujimoto S, Hiromoto S (2006) Electrochemical study of Type 304 and 316L stainless steels in simulated body fluids and cell cultures. Acta Biomater 2:709–715

    Article  PubMed  Google Scholar 

  • Tomozawa M, Hiromoto S (2011) Growth mechanism of hydroxyapatite coatings formed on pure magnesium and corrosion behavior of the coated magnesium. Appl Surf Sci 257(19):8253–8257

    Article  CAS  Google Scholar 

  • Wagener V, Faltz AS, Killian MS, Schmuki P, Virtanen S (2015) Protein interactions with corroding metal surfaces: comparison of Mg and Fe. Faraday Discuss 180:347–360

    Article  CAS  PubMed  Google Scholar 

  • Wan P, Tan L, Yang K (2016) Biodegradable materials for bone repairs: a review. J Mater Sci Technol 32:827–834

    Article  Google Scholar 

  • Wang H, Shi Z (2011) In vitro biodegradation behavior of magnesium and magnesium alloy. J Biomed Mater Res, Part B 98:203–209

    Article  CAS  Google Scholar 

  • Wang HX, Guan SK, Wang X, Ren CX, Wang LG (2010) In vitro degradation and mechanical integrity of Mg-Zn-Ca alloy coated with Ca-deficient hydroxyapatite by the pulse electrodeposition process. Acta Biomater 6:1743–1748

    Article  CAS  PubMed  Google Scholar 

  • Wang H, Guan S, Wang Y, Liu H, Wang L, Ren C, Zhu S, Chen K (2011) In vivo degradation behavior of Ca-deficient hydroxyapatite coated Mg-Zn-Ca alloy for bone implant application. Colloids Surf B 88:254–259

    Article  CAS  Google Scholar 

  • Wang J, Tang J, Zhang P, Li Y, Wang J, Lai Y (2012) Acceleration effect of basic fibroblast growth factor on the regeneration of peripheral nerve through a 15-mm gap. J Biomed Mater Res B100:1691–1701

    Article  CAS  Google Scholar 

  • Wang X, Xu S, Zhou S, Xu W, Leary M, Choong P, Qian M, Brandt M, Xie Y (2016) Topological design and additive manufacturing of porous metals for bone scaffolds and orthopaedic implants: a review. Biomaterials 83:127–141

    Article  CAS  PubMed  Google Scholar 

  • Wang G, Fu H, Zhao Y, Zhou K, Zhu S (2017) Aging microstructural characteristics of ZA-27 alloy and SiCdZA-27 composite. Trans Nonferrous Met Soc China 27:2007–2014

    Article  CAS  Google Scholar 

  • Willumeit-Römer R, Wendel HP, Mihailova B, Agha NA, Feyerabend F (2014) Magnesium degradation influenced by buffering salts in concentrations typical of in vitro and in vivo models. Eur Cells Mater 28:29

    Google Scholar 

  • Witte F (2010) The history of biodegradable magnesium implants: a review. Acta Biomater 6:1680–1692

    Article  CAS  PubMed  Google Scholar 

  • Witte F, Kaese V, Haferkamp H, Switzer E, Wirth C, Windhagen H (2005) In vivo corrosion of four magnesium alloys and the associated bone response. Biomaterials 26:3557–3563

    Article  CAS  PubMed  Google Scholar 

  • Witte F, Fischer J, Nellesen J, Crostack H, Kaese V, Pisch A, Windhagen H (2006) In vitro and in vivo corrosion measurements of magnesium alloys. Biomaterials 27:1013–1018

    Article  CAS  PubMed  Google Scholar 

  • Witte F, Feyerabend F, Maier P, Fischer J, Stormer M, Blawert C, Dietzel W, Hort N (2007) Biodegradable magnesium-hydroxyapatite metal matrix composites. Biomaterials 28:2163–2174

    Article  CAS  PubMed  Google Scholar 

  • Witte F, Hort N, Vogt C, Kainer K, Willumeit R, Feyeraben F (2008) Degradable biomaterials based on magnesium corrosion. Curr Opin Solid State Mater Sci 12:63–72

    Article  CAS  Google Scholar 

  • Wong HM, Yeung KW, Lam KO, Tam V, Chu PK, Luk KD, Cheung K (2010) A biodegradable polymer-based coating to control the performance of magnesium alloy orthopaedic implants. Biomaterials 31:2084–2096

    Article  CAS  PubMed  Google Scholar 

  • Wu G, Ibrahim JM, Chu PK (2013) Corrosion behavior of Nd ion implanted Mg-Gd-Zn-Zr alloy in simulated body fluid. Surf Coat Technol 233:2–12

    Article  CAS  Google Scholar 

  • Yamamoto A, Hiromoto S (2009) Effect of inorganic salts, amino acids and proteins on the degradation of pure magnesium in vitro. Mater Sci and Eng C 29:1559–1568

    Article  CAS  Google Scholar 

  • Yang J, Cui F, Lee IS (2011) Surface modifications of magnesium alloys for biomedical applications. Ann Biomed Eng 39:1857–1871

    Article  PubMed  Google Scholar 

  • Zardiackas LD, Dillon LD, Mitchell DW, Nunnery LA, Poggie R (2001) Structure, metallurgy and mechanical properties of porous tantalum foam. J Biomed Mater Res 58:180–187

    Article  CAS  PubMed  Google Scholar 

  • Zhang LN, Hou ZT, Ye X, Xu ZB, Bai XL, Shang P (2013) Aligned single-crystalline perovskite microwave arrays for high-performance flexible image sensors with long-term stability. Front Mater Sci 7(3):227–236

    Article  Google Scholar 

  • Zhuang H, Han Y, Feng A (2008) Preparation, mechanical properties and in vitro biodegradation of porous magnesium scaffolds. Mater Sci Eng C28:1462–1466

    Article  CAS  Google Scholar 

  • Živić F, Grujović N, Manivasagam G, Richard C, Landoulsi J, Petrović V (2014) The potential of magnesium alloys as bioabsorbable/biodegradable implants for biomedical applications. Tribol Ind 36:67–73

    Google Scholar 

  • Zomorodian A, Brusciotti F et al (2012) Corrosion resistance of a composite polymeric coating applied on biodegradable AZ31 magnesium alloy. Surf Coat Technol 206:4368–4375

    Article  CAS  Google Scholar 

  • Zomorodian A, Garcia M, Fernandes J, Fernandes M, Montemor M (2013) Corrosion resistance of a composite polymeric coating applied on biodegradableAZ31 magnesium alloy. Acta Biomater 9:8660–8670

    Article  CAS  PubMed  Google Scholar 

  • Zou X, Li H, Bünger M, Egund N, Lind M, Bünger C (2004) Bone ingrowth characteristics of porous tantalum and carbon fiber interbody devices: an experimental study in pigs. Spine J 4:99–105

    Article  PubMed  Google Scholar 

  • Zreiqat H, Howlett C, Zannettion A, Evans P, Knabe C, Shakibaei M (2002) Mechanisms of magnesium-stimulated adhesion of osteoblastic cells to commonly used orthopaedic implants. Biomed Mater Res 62:175–184

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors would like to thank Department of Materials Engineering, Institute of Technology Berlin for the extremely helpful guidance in carrying out the review paper and providing them with the appropriate data required.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sepideh Kamrani.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kamrani, S., Fleck, C. Biodegradable magnesium alloys as temporary orthopaedic implants: a review. Biometals 32, 185–193 (2019). https://doi.org/10.1007/s10534-019-00170-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10534-019-00170-y

Keywords

Navigation