Skip to main content
Log in

Fremyella diplosiphon as a Biodiesel Agent: Identification of Fatty Acid Methyl Esters via Microwave-Assisted Direct In Situ Transesterification

  • Published:
BioEnergy Research Aims and scope Submit manuscript

Abstract

Increasing concerns on environmental and economic issues linked to fossil fuel use has driven great interest in cyanobacteria as third-generation biofuel agents. In this study, the biodiesel potential of a model photosynthetic cyanobacterium, Fremyella diplosiphon, was identified by fatty acid methyl esters (FAME) via direct transesterification. Total lipids in wild type (Fd33) and halotolerant (HSF33-1 and HSF33-2) strains determined by gravimetric analysis yielded 19% cellular dry weight (CDW) for HSF33-1 and 20% CDW for HSF33-2, which were comparable to Fd33 (18% CDW). Gas chromatography-mass spectrometry detected a high ratio of saturated to unsaturated FAMEs (2.48–2.61) in transesterified lipids, with methyl palmitate being the most abundant (C16:0). While theoretical biodiesel properties revealed high cetane number and oxidative stability, high cloud and pour point values indicated that fuel blending could be a viable approach. Significantly high FAME abundance in total transesterified lipids of HSF33-1 (40.2%) and HSF33-2 (69.9%) relative to Fd33 (25.4%) was identified using comprehensive two-dimensional gas chromatography coupled to time-of-flight mass spectrometry, indicating that robust salt stress response corresponds to higher levels of extractable FAME. Alkanes, a key component in conventional fuels, were present in F. diplosiphon transesterified lipids across all strains confirming that natural synthesis of these hydrocarbons is not inhibited during biodiesel production. While analysis of photosynthetic pigments and phycobiliproteins did not reveal significant differences, FAME abundance varied significantly in wild type and halotolerant strains indicating that photosynthetic pathways are not the sole factors that determine fatty acid production. We characterize the potential of F. diplosiphon for biofuel production with FAME yields in halotolerant strains higher than the wild type with no loss in photosynthetic pigmentation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Martens P (2014) Health and climate change: modelling the impacts of global warming and ozone depletion. Routledge, New York

    Book  Google Scholar 

  2. Goldemberg J (2007) Ethanol for a sustainable energy future. Science 315:808–810

    Article  PubMed  CAS  Google Scholar 

  3. Hill J, Nelson E, Tilman D, Polasky S, Tiffany D (2006) Environmental, economic, and energetic costs and benefits of biodiesel and ethanol biofuels. Proc Natl Acad Sci USA 103:11206–11210

    Article  PubMed  CAS  Google Scholar 

  4. Rodolfi L, Chini Zittelli G, Bassi N, Padovani G, Biondi N, Bonini G, Tredici MR (2009) Microalgae for oil: strain selection, induction of lipid synthesis and outdoor mass cultivation in a low-cost photobioreactor. Biotechnol Bioeng 102:100–112

    Article  PubMed  CAS  Google Scholar 

  5. Machado IM, Atsumi S (2012) Cyanobacterial biofuel production. J Biotechnol 162:50–56

    Article  PubMed  CAS  Google Scholar 

  6. Peralta-Yahya PP, Zhang F, Del Cardayre SB, Keasling JD (2012) Microbial engineering for the production of advanced biofuels. Nature 488:320–328

    Article  PubMed  CAS  Google Scholar 

  7. Wahlen BD, Willis RM, Seefeldt LC (2011) Biodiesel production by simultaneous extraction and conversion of total lipids from microalgae, cyanobacteria, and wild mixed-cultures. Bioresour Technol 102:2724–2730

    Article  PubMed  CAS  Google Scholar 

  8. Koberg M, Gedanken A (2012) Direct transesterification of castor and Jatropha seeds for FAME production by microwave and ultrasound radiation using a SrO catalyst. BioEnergy Res 5:958–968

    Article  CAS  Google Scholar 

  9. Dismukes GC, Carrieri D, Bennette N, Ananyev GM, Posewitz MC (2008) Aquatic phototrophs: efficient alternatives to land-based crops for biofuels. Curr Opin Biotechnol 19:235–240

    Article  PubMed  CAS  Google Scholar 

  10. Dong T, Wang J, Miao C, Zheng Y, Chen S (2011) Two-step in situ biodiesel production from microalgae with high free fatty acid content. Bioresour Technol 136:8–15

    Article  CAS  Google Scholar 

  11. Lim S, Hoong SS, Teong LK, Bhatia S (2010) Supercritical fluid reactive extraction of Jatropha curcas L. seeds with methanol: a novel biodiesel production method. Bioresour Technol 101:7169–7172

    Article  CAS  Google Scholar 

  12. Canakci M (2007) The potential of restaurant waste lipids as biodiesel feedstocks. Bioresour Technol 98:183–190

    Article  PubMed  CAS  Google Scholar 

  13. Atabani AE, Silitonga AS, Badruddin IA, Mahlia TMI, Masjuki HH, Mekhilef S (2012) A comprehensive review on biodiesel as an alternative energy resource and its characteristics. Renew Sust Energ Rev 16:2070–2093

    Article  Google Scholar 

  14. Hu P, Borglin S, Kamennaya NA, Chen L, Park H, Mahoney L, Quinn NW (2013) Metabolic phenotyping of the cyanobacterium Synechocystis 6803 engineered for production of alkanes and free fatty acids. Appl Energy 102:850–859

    Article  CAS  Google Scholar 

  15. Vicente G, Bautista LF, Rodríguez R, Gutiérrez FJ, Sádaba I, Ruiz-Vázquez RM, Garre V (2009) Biodiesel production from biomass of an oleaginous fungus. Biochem Eng J 48:22–27

    Article  CAS  Google Scholar 

  16. Lewis T, Nichols PD, McMeekin TA (2000) Evaluation of extraction methods for recovery of fatty acids from lipid-producing microheterotrophs. J Microbiol Methodol 43:107–116

    Article  CAS  Google Scholar 

  17. Schirmer A, Rude MA, Li X, Popova E, Del Cardayre SB (2010) Microbial biosynthesis of alkanes. Science 329:559–562

    Article  PubMed  CAS  Google Scholar 

  18. Han J, McCarthy ED, Calvin M, Benn MH (1968) Hydrocarbon constituents of the blue-green algae Nostoc muscorum, Anacystis nidulans, Phormidium luridium and Chlorogloea fritschii. J Chem Soc C 0:2785–2791

  19. Lu X (2010) A perspective: photosynthetic production of fatty acid-based biofuels in genetically engineered cyanobacteria. Biotechnol Adv 28:742–746

    Article  PubMed  CAS  Google Scholar 

  20. Lang I, Hodac L, Friedl T, Feussner I (2011) Fatty acid profiles and their distribution patterns in microalgae: a comprehensive analysis of more than 2000 strains from the SAG culture collection. BMC Plant Biol 11:124

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  21. Gutu A, Kehoe DM (2012) Emerging perspectives on the mechanisms, regulation, and distribution of light color acclimation in cyanobacteria. Mol Plant 5:1–13

    Article  PubMed  CAS  Google Scholar 

  22. Singh SP, Montgomery BL (2013) Salinity impacts photosynthetic pigmentation and cellular morphology changes by distinct mechanisms in Fremyella diplosiphon. Biochem Biophys Res Commun 433:84–89

    Article  PubMed  CAS  Google Scholar 

  23. Tabatabai B, Arumanayagam AS, Enitan O, Mani A, Natarajan SS, Sitther V (2017) Overexpression of hlyB and mdh genes confers halotolerance in Fremyella diplosiphon, a freshwater cyanobacterium. Enzym Microb Technol 103:12–17

    Article  CAS  Google Scholar 

  24. Tabatabai B, Arumanayagam AS, Enitan O, Mani A, Natarajan SS, Sitther V (2017) Identification of a halotolerant mutant via in vitro mutagenesis in the cyanobacterium Fremyella diplosiphon. Curr Microbiol 74:77–83

    Article  PubMed  CAS  Google Scholar 

  25. Cobley G, Zerweck E, Reyes R, Mody A, Seludo-Unson JR, Jaeger HR, Weerasuriya S, Navankasattusas S (1990) Construction of shuttle plasmids which can be efficiently mobilized from Escherichia coli into the chromatically adapting cyanobacterium Fremyella diplosiphon. Plasmid 30:90–105

    Article  Google Scholar 

  26. Allen MJ (1968) Simple conditions for growth of unicellular blue-green algae on plates. Phycologia 4:1–4

    Article  CAS  Google Scholar 

  27. Folch J, Lees M, Sloane-Stanley GH (1957) A simple method for the isolation and purification of total lipids from animal tissues. J Biol Chem 226:497–509

    PubMed  CAS  Google Scholar 

  28. Rosenberg JN, Kobayashi N, Barnes A, Noel EA, Betenbaugh MJ, Oyler GA (2014) Comparative analyses of three Chlorella species in response to light and sugar reveal distinctive lipid accumulation patterns in the microalga C. sorokiniana. PLoS One 9:e92460

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  29. Talebi AF, Tabatabaei M, Christi Y (2014) BiodieselAnalyzer: a user-friendly software for predicting the properties of prospective biodiesel. Biofuel Res J 1:55–57

    Article  CAS  Google Scholar 

  30. Kahn K, Mazel D, Houmard J, Tandeau de Marsac N, Schaefer M (1997) A role for cpeYZ in cyanobacterial phycoerythrin biosynthesis. J Bacteriol 179:998–1006

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  31. Tandeau de Marsac N, Houmard J (1988) Complementary chromatic adaptation: physiological conditions and action spectra. Methods Enzymol 167:318–328

    Article  CAS  Google Scholar 

  32. Whitaker M, Bordowitz J, Montgomery B (2009) CpcF-dependent regulation of pigmentation and development in Fremyella diplosiphon. Biochem Biophys Res Commun 389:602–606

    Article  PubMed  CAS  Google Scholar 

  33. Liao JC, Mi L, Pontrelli S, Luo S (2016) Fueling the future: microbial engineering for the production of sustainable biofuels. Nat Rev Microbiol 14:288–304

    Article  PubMed  CAS  Google Scholar 

  34. Abou-Shanab RA, Ji MK, Kim HC, Paeng KJ, Jeon BH (2013) Microalgal species growing on piggery wastewater as a valuable candidate for nutrient removal and biodiesel production. J Environ Manag 115:257–264

    Article  CAS  Google Scholar 

  35. Gouveia L, Oliveira AC (2009) Microalgae as a raw material for biofuels production. J Ind Microbiol Biotechnol 36:269–274

    Article  PubMed  CAS  Google Scholar 

  36. Rittmann BE (2008) Opportunities for renewable bioenergy using microorganisms. Biotechnol Bioeng 100:203–212

    Article  PubMed  CAS  Google Scholar 

  37. Rashid U, Anwar F, Moser BR, Knothe G (2008) Moringa oleifera oil: a possible source of biodiesel. Bioresour Technol 99:8175–8179

    Article  PubMed  CAS  Google Scholar 

  38. Masera K, Hossain AK (2017) Production, characterisation and assessment of biomixture fuels for compression ignition engine application. World Acad Sci Engn Technol Internat J Mech Aero Indust Mecha Manufact Engn 11:1852–1858

    Google Scholar 

  39. Frysinger GS, Gaines RB, Xu L, Redd CM (2003) Resolving the unresolved complex mixture in petroleum-contaminated sediments. Environ Sci Technol 37:1653–1662

    Article  PubMed  CAS  Google Scholar 

  40. Lea-Smith JD, Biller SJ, Davey MP, Cotton CA, Sepulveda BMP, Turchyn AV, Howe CJ (2015) Contribution of cyanobacterial alkane production to the ocean hydrocarbon cycle. Proc Natl Acad Sci USA 112:13591–13596

    Article  PubMed  CAS  Google Scholar 

  41. Valentine DL, Reddy CM (2015) Latent hydrocarbons from cyanobacteria. Proc Natl Acad Sci USA 112:13434–13435

    Article  PubMed  CAS  Google Scholar 

  42. Peramuna A, Morton R, Summers ML (2015) Enhancing alkane production in cyanobacterial lipid droplets: a model platform for industrially relevant compound production. Life 5:1111–1126

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  43. Liu A, Zhu T, Lu X, Song LH (2013) Hydrocarbon profiles and phylogenetic analyses of diversified cyanobacterial species. Appl Energy 111:383–393

    Article  CAS  Google Scholar 

  44. Ladygina N, Dedyukhina EG, Vainshtein MG (2006) A review on microbial synthesis of hydrocarbons. Process Biochem 41:1001–1014

    Article  CAS  Google Scholar 

  45. Department of Energy (2018) Biodiesel blends. Alternative Fuels Data Center. https://www.afdc.energy.gov/fuels/biodiesel_blends.html. Accessed 10 Apr 2018

  46. Parmar A, Singh NK, Pandey A, Gnansounou E, Madamwar D (2011) Cyanobacteria and microalgae: a positive prospect for biofuels. Bioresour Technol 102:10163–10172

    Article  PubMed  CAS  Google Scholar 

  47. Lindberg P, Park S, Melis A (2010) Engineering a platform for photosynthetic isoprene production in cyanobacteria, using Synechocystis as the model organism. Metab Eng 12:70–79

    Article  PubMed  CAS  Google Scholar 

  48. Liu X, Sheng J, Curtiss R III (2011) Fatty acid production in genetically modified cyanobacteria. Proc Natl Acad Sci USA 108:6899–6904

    Article  PubMed  Google Scholar 

Download references

Acknowledgments

The study was supported by TEDCO MII [0913-001-3] and the National Institutes of Health [UL1GM118973] awarded to Morgan State University and the National Science Foundation [DMR 11-57490] awarded to the National High Magnetic Field Laboratory and the State of Florida. Assistance provided by the Future Fuels Institute in the Ion Cyclotron Resonance Facility is gratefully acknowledged. The authors thank Dr. Beronda L. Montgomery at Michigan State University for providing the Fd33 strain and Dr. Solomon Tadesse at Morgan State University for the technical help.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Viji Sitther.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Tabatabai, B., Chen, H., Lu, J. et al. Fremyella diplosiphon as a Biodiesel Agent: Identification of Fatty Acid Methyl Esters via Microwave-Assisted Direct In Situ Transesterification. Bioenerg. Res. 11, 528–537 (2018). https://doi.org/10.1007/s12155-018-9919-y

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12155-018-9919-y

Keywords

Navigation