Skip to main content

Advertisement

Log in

An overview of biorefinery-derived platform chemicals from a cellulose and hemicellulose biorefinery

  • Original Paper
  • Published:
Clean Technologies and Environmental Policy Aims and scope Submit manuscript

Abstract

Until recently, most of energy and industrially produced chemicals were derived from fossil fuel-based resources. This along with the continued depletion of finite fossil resources and their attributed adverse environmental impacts, alternatively sourced and more sustainable resources are being pursued as feedstock replacements. Thus, biomass has been identified as an alternate renewable and more sustainable resource as a means to reduce this sector’s dependence on fossil fuel-based resources and to alleviate their environmental impacts. As such, lignocellulosic biomass has been further identified and demonstrated as an abundant renewable resource for the production of biofuels, platform chemicals, and their respective value-added products. This review article provides an overview of the techniques developed for the valorization of biomass in the production of platform chemicals within a biorefinery and the status for commercialization.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  • Abad S, Turon X (2012) Valorization of biodiesel derived glycerol as a carbon source to obtain added-value metabolites: focus on polyunsaturated fatty acids. Biotechnol Adv 30:733–741

    Article  CAS  Google Scholar 

  • Abubackar HN, Veiga MC, Kennes C (2011) Biological conversion of carbon monoxide: rich syngas or waste gases to bioethanol. Biofuels Bioprod Bioref 5:93–114

    Article  CAS  Google Scholar 

  • Adkins J, Pugh S, McKenna R, Nielsen DR (2012) Engineering microbial chemical factories to produce renewable “biomonomers”. Front Microbiol 3:313

    Article  Google Scholar 

  • Agbor VB, Cicek N, Sparling R, Berlin A, Levin DB (2011) Biomass pretreatment: fundamentals toward application. Biotechnol Adv 29:675–685

    Article  CAS  Google Scholar 

  • Almeida JRM, Favaro LCL, Quirino BF (2012) Biodiesel biorefinery: opportunities and challenges for microbial production of fuels and chemicals from glycerol waste. Biotechnol Biofuels 5:48

    Article  CAS  Google Scholar 

  • Alonso DM, Bond JQ, Dumesic JA (2010) Catalytic conversion of biomass to biofuels. Green Chem 12:1493–1513

    Article  CAS  Google Scholar 

  • Altaras NE, Cameron DC (1999) Metabolic engineering of a 1,2-propanediol pathway in Escherichia coli. Appl Environ Microbiol 65:1180–1185

    CAS  Google Scholar 

  • Amyris. https://amyris.com/products/isoprene/. Accessed 22 June 2017

  • Arena U (2012) Process and technological aspects of municipal solid waste gasification. Rev Waste Manag 32:625–639

    Article  CAS  Google Scholar 

  • Avantium (2016) Press release. https://www.avantium.com/press-releases/synvina-joint-venture-basf-avantium-established/

  • Avantium. https://www.avantium.com/yxy/products-applications/. Accessed 22 June 2017

  • Bai R, Zhang H, Mei F, Wang S, Li T, Gu Y, Li G (2013) One-pot synthesis of glycidol from glycerol and dimethyl carbonate over a highly efficient and easily available solid catalyst NaAlO2. Green Chem 15:2929–2934

    Article  CAS  Google Scholar 

  • Banu M, Venuvanalingam P, Shanmugam R, Viswanathan B, Sivasanker S (2012) Sorbitol hydrogenolysis over Ni, Pt and Ru supported on NaY. Top Catal 55:897–907

    Article  CAS  Google Scholar 

  • Barbosa BM, Colodette JL, Longue D Jr, Gomes FJB, Martino DC (2014) Preliminary studies on furfural production from lignocellulosics. J Wood Chem Technol 34:178–190

    Article  CAS  Google Scholar 

  • Behr A, Eilting J, Irawadi K, Leschinski J, Lindner F (2008) Improved utilisation of renewable resources: new important derivatives of glycerol. Green Chem 10:13–30

    Article  CAS  Google Scholar 

  • Bell BM, Briggs JR, Campbell RM, Chambers SM, Gaarenstroom PD, Hippler JG, Hook BD, Kearns H, Kenney JM, Kruper WJ, Schreck DJ, Theriault CN, Wolfe CP (2008) Glycerin as a renewable feedstock for epichlorohydrin production. The GTE process. Clean 36:657–661

    CAS  Google Scholar 

  • BIO (2016). Advancing the biobased economy: renewable chemical biorefinery commercialization, progress and market opportunities and beyond. https://www.bio.org/advancing-biobased-economy-renewable-chemical-biorefinery-commercialization-progress-and-market. Accessed 22 June 2017

  • Bioamber (2015) Press release. https://www.bio-amber.com/bioamber/en/news/2015/bioamber-now-shipping-bio-succinic-acid-to-customers

  • Bozell JJ, Petersen GR (2010) Technology development for the production of biobased products from biorefinery carbohydrates-the US Department of Energy’s “Top 10” revisited. Green Chem 12:539–554

    Article  CAS  Google Scholar 

  • Brethauer S, Studer MH (2015) Biochemical conversion processes of lignocellulosic biomass to fuels and chemicals—a review. Chimia 69:572–581

    Article  CAS  Google Scholar 

  • Cargill (2006). http://www.foodingredientsfirst.com/news/Cargill-to-Commercialize-Renewable-Propylene-Glycol-from-Glycerin.html/ Accessed 30 June 2017

  • Chatterjee C, Pong F, Sen A (2015) Chemical conversion pathways for carbohydrates. Green Chem 17:40–71

    Article  CAS  Google Scholar 

  • Chen X, Jiang Z, Chen S, Qin W (2010) Microbial and bioconversion production of d-xylitol and its detection and application. Int J Biol Sci 6:834–844

    Article  CAS  Google Scholar 

  • Chen J, Wang S, Huang J, Chen L, Ma L, Huang X (2013) Conversion of cellulose and cellobiose into sorbitol catalyzed by ruthenium supported on a polyoxometalate/metal–organic framework hybrid. Chemsuschem 6:1545–1555

    Article  CAS  Google Scholar 

  • Cherubini F, Jungmeier G, Wellisch M, Willke T, Skiadas I, Van Ree R, de Jong E (2009) Toward a common classification approach for biorefinery systems. Biofuels Bioprod Bioref 3:534–546

    Article  CAS  Google Scholar 

  • Chiu CW, Dasari MA, Suppes GJ, Sutterlin WR (2006) Dehydration of glycerol to acetol via catalytic reactive distillation. AIChE J 52:3543–3548

    Article  CAS  Google Scholar 

  • Ciriminna R, Pagliaro M (2003) One-pot homogeneous and heterogeneous oxidation of glycerol to ketomalonic acid mediated by TEMPO. Adv Synth Catal 345:383–388

    Article  CAS  Google Scholar 

  • Clark JH, Deswarte FEI (2008) The biorefinery concept–an integrated approach. In: Clark JH, Deswarte FEI (eds) Introduction to chemicals from biomass. Wiley, Chichester, pp 1–20. https://doi.org/10.1002/9780470697474

    Chapter  Google Scholar 

  • Clomburg JM, Gonzalez R (2013) Anaerobic fermentation of glycerol: a platform for renewable fuels and chemicals. Trends Biotechnol 31:20–28

    Article  CAS  Google Scholar 

  • Corbion. http://www.corbion.com/biochemicals/pharma/brands/purac. Accessed 22 June 2017

  • Corma A, Iborra S, Velty A (2007) Chemical routes for the transformation of biomass into chemicals. Chem Rev 107:2411–2502

    Article  CAS  Google Scholar 

  • Craciun L, Benn GP, Dewing J, Schriver GW (2009), US Pat, 7,538,247

  • Dasari MA, Kiatsimkul PP, Sutterlin WR, Suppes GJ (2005) Low-pressure hydrogenolysis of glycerol to propylene glycol. Appl Catal A 281:225–231

    Article  CAS  Google Scholar 

  • Datta R, Henry M (2006) Lactic acid: recent advances in products, processes and technologies-a review. J Chem Technol Biotechnol 81:1119–1129

    Article  CAS  Google Scholar 

  • de Jong E, Jungmeier G (2015) Biorefinery concepts in comparison to petrochemical refineries. In: Pandey A, Hofer R, Taherzadeh M, Nampoothiri M, Larroche C (eds) Industrial biorefineries and white biotechnology, 1st edn. Elsevier, Amsterdam

    Google Scholar 

  • de Jong E, Higson A, Walsh P, Wellissch M (2013) Bio-based chemicals, value added products from biorefineries. In: IEA Bioenergy Task 42 report 2012. www.ieabioenergy.com/wp-content/uploads/2013/10/Task-42-Biobased-Chemicals-value-added-products-from-biorefineries.pdf. Accessed 12 March 2018

  • Delhomme C, Weuster-Botz D, Kuhn FE (2009) Succinic acid from renewable resources as a C4 building-block chemical—a review of the catalytic possibilities in aqueous media. Green Chem 11:13–26

    Article  CAS  Google Scholar 

  • Demirbas A (2011) Competitive liquid biofuels from biomass. Appl Energy 88:17–28

    Article  CAS  Google Scholar 

  • Direvo press release. http://www.direvo.com/uploads/media/DIREVO-PressRelease_No6_2013.pdf Accessed 22 June 2017

  • Dietrich K, Hernandez-Mejia C, Verschuren P, Rothenberg G, Shiju NR (2017) One-pot selective conversion of hemicellulose to xylitol. Org Process Res Dev 21:165–170

    Article  CAS  Google Scholar 

  • Dow press release (2007). http://www.dow.com/propyleneglycol/news/20070315b.htm. Accessed 30 June 2017

  • DuPont press release (2016). http://www.dupont.com/products-and-services/industrial-biotechnology/press-releases/dupont-adm-announce-platform-technology-for-long-sought-after-molecule.html. Accessed 22 June 2017

  • DuPont. http://biosciences.dupont.com/about-us/collaborations/goodyear/. Accessed 22 June 2017

  • Dutta S, De S, Saha B (2012a) A brief summary of the synthesis of polyester building-block chemicals and Biofuels from 5-hydroxymethylfurfural. ChemPlusChem 77:259–272

    Article  CAS  Google Scholar 

  • Dutta S, De S, Saha B, Alam MdI (2012b) Advances in conversion of hemicellulosic biomass to furfural and upgrading to biofuels. Catal Sci Technol 2:2025–2036

    Article  CAS  Google Scholar 

  • Erickson B, Nelson JE, Winters P (2012) Perspective on opportunities in industrial biotechnology in renewable chemicals. Biotechnol J 7:176–185

    Article  CAS  Google Scholar 

  • Esposito D, Antonietti M (2015) Redefining biorefinery: the search for unconventional building blocks for materials. Chem Soc Rev 44:5821–5835

    Article  CAS  Google Scholar 

  • Fernando S, Adhikari S, Chandrapal C, Murali N (2006) Biorefineries: current status, challenges and future direction. Energy Fuels 20:1727–1737

    Article  CAS  Google Scholar 

  • Genencor. http://www.genencor.com/uploads/tx_tcdaniscofiles/GENC-10053_BioIsoprene_Backgrounder_prt.pdf. Accessed 22 June 2017

  • GF Biochemicals press release (2015) http://www.gfbiochemicals.com/news/2015/07/gfbiochemicals-announces-production-start-up/. Accessed 22 June 2017

  • Ghaffar T, Irshad M, Anwar Z, Aqil T, Zulifqar Z, Tariq A, Kamran M, Ehsan N, Mehmood S (2014) Recent trends in lactic acid biotechnology: a brief review on production to purification. J Radiat Res Appl Sci 7:222–229

    Article  CAS  Google Scholar 

  • Gil S, Cuenca N, Romero A, Valverde JL, Sáchez-Silva L (2014) Optimization of the synthesis procedure of microparticles containing gold for the selective oxidation of glycerol. Appl Catal A 472:11–20

    Article  CAS  Google Scholar 

  • Gonzalez-Pajuelo M, Meynial-Salles I, Mendes F, Soucaille P, Vasconcelos I (2006) Microbial conversion of glycerol to 1,3-propanediol: physiological comparison of a natural producer, Clostridium butyricum VPI 3266, and an engineered strain, Clostridium acetobutylicum DG1(pSPD5). Appl Environ Microbiol 72:96–101

    Article  CAS  Google Scholar 

  • Gravitis J, Vedernikov N, Zandersons J, Kokorevics A (2001) Furfural and levoglucosan production from deciduous wood and agricultural wastes. Chemicals and materials from renewable resources, vol 784. Am Chem Soc, Washington, DC, pp 110–122

    Chapter  Google Scholar 

  • Guo Y, Li K, Yu X, Clark JH (2008) Mesoporous H3PW12O40–silica composite: efficient and reusable solid acid catalyst for the synthesis of diphenolic acid from levulinic acid. Appl Catal B 81:182–191

    Article  CAS  Google Scholar 

  • Hayes DJ (2009) An examination of biorefining processes, catalysts and challenges. Catal Today 145:138–151

    Article  CAS  Google Scholar 

  • Huang SY, Lipp DW, Farinato RS (2001) Acrylamide polymers. In: Encyclopedia of polyer science and technology. Wiley. https://doi.org/10.1002/0471440264

  • Huntsman news (2006). http://www.huntsman.com/performance_products/Applications/itemrenderer?p_item_id=230137714&p_item_caid=1143. Accessed 30 June 2017

  • Ilmen M, Koivuranta K, Ruohonen L, Suominen P, Penttila M (2007) Efficient production of l-lactic acid from xylose by Pichia stipites. Appl Environ Microbiol 73:117–123

    Article  CAS  Google Scholar 

  • Isikgor FH, Becer CR (2015) Lignocellulosic biomass: a sustainable platform for the production of bio-based chemicals and polymers. Poly Chem 6:4497–4559

    Article  CAS  Google Scholar 

  • John RP, Nampoothiri KM, Pandey A (2007) Fermentative production of lactic acid from biomass: an overview on process developments and future perspectives. Appl Microbiol Biotechnol 74:524–534

    Article  CAS  Google Scholar 

  • Jorgensen H, Kirstensen JB, Felby C (2007) Enzymatic conversion of lignocellulose into fermentable sugars: challenges and opportunities. Biofuels Bioprod Bioref 1:119–134

    Article  CAS  Google Scholar 

  • Kamm B (2007) Production of platform chemicals and synthesis gas from biomass. Angew Chem Int Ed 46:5056–5058

    Article  CAS  Google Scholar 

  • Kamm B, Kamm M (2004) Principles of biorefineries. Appl Microbiol Biotechnol 64:137–145

    Article  CAS  Google Scholar 

  • Kamm B, Gruber PR, Kamm M (2006) Biorefineries-industrial processes and products. Wiley-VCH Verlag GmbH & Co. K GaA, Weinheim

    Google Scholar 

  • Kildegaard KR, Wang Z, Chen Y, Nielsen J, Borodina I (2015) Production of 3-hydroxypropionic acid from glucose and xylose by metabolically engineered Saccharomyces cerevisiae. Metab Eng Commun 2:132–136

    Article  Google Scholar 

  • Kim HJ, Lee J, Green SK, Huber GW, Kim WB (2014) Selective glycerol oxidation by electrocatalytic dehydrogenation. ChemSusChem 7:1051–1054

    Article  CAS  Google Scholar 

  • Kobayashi H, Fukuoka A (2013) Synthesis and utilisation of sugar compounds derived from lignocellulosic biomass. Green Chem 15:1740–1763

    Article  CAS  Google Scholar 

  • Kondamudi N, Misra M, Banerjee S, Mohapatra S (2012) Simultaneous production of glyceric acid and hydrogen from the photooxidation of crude glycerol using TiSi2. Appl Catal B 126:180–185

    Article  CAS  Google Scholar 

  • Kumar P, Barrett DM, Delwiche MJ, Stroeve P (2009) Methods for pretreatment of lignocellulosic biomass for efficient hydrolysis and biofuel production. Ind Eng Chem Res 48:3713–3729

    Article  CAS  Google Scholar 

  • Kumar V, Ashok S, Park S (2013) Recent advances in biological production of 3-hydroxypropionic acid. Biotechnol Adv 31:945–961

    Article  CAS  Google Scholar 

  • Li H, Yang S, Riisager A, Pandey A, Sangwan RS, Saravanamurugan S, Luque R (2016) Zeolite and zeotype-catalysed transformations of biofuranic compounds. Green Chem 18:5701–5735

    Article  CAS  Google Scholar 

  • Lugani Y, Oberoi S, Sooch BS (2017) Xylitol: a sugar substitute for patients of diabetes mellitus. World J Pharm Pharm Sci 6:741–749

    CAS  Google Scholar 

  • Luque R, Clark JH, Yoshida K, Gai PL (2009) Efficient aqueous hydrogenation of biomass platform molecules using supported metal nanoparticles on Starbons. Chem Commun 35:5305–5307

    Article  CAS  Google Scholar 

  • Ma J, Song J, Liu H, Liu J, Zhang Z, Jiang T, Fan H, Han B (2012) One-pot conversion of CO2 and glycerol to value-added products using propylene oxide as the coupling agent. Green Chem 14:1743–1748

    Article  CAS  Google Scholar 

  • Machado G, Leon S, Santos F, Lourega R, Dellius J, Mollmann ME, Eichler P (2016) Literature review on furfural production from lignocellulosic biomass. Nat Resour 7:115–129

    CAS  Google Scholar 

  • Magrini-Bair KA, Jablonski WS, Parent YO, Yung MM (2012) Bench and pilot scale studies of reaction and regeneration of Ni–Mg–K/Al2O3 for catalytic conditioning of biomass-derived syngas. Top Catal 55:209–217

    Article  CAS  Google Scholar 

  • Maki-Arvela P, Salmi T, Holmbom B, Willfor S, Murzin DY (2011) Synthesis of sugars by hydrolysis of hemicelluloses—a review. Chem Rev 111:5638–5666

    Article  CAS  Google Scholar 

  • Maki-Arvela P, Simakova IL, Salmi T, Murzin DY (2014) Production of lactic acid/lactates from biomass and their catalytictransformations to commodities. Chem Rev 114:1909–1971

    Article  CAS  Google Scholar 

  • Maris EP, Ketchie WC, Murayama M, Davis RJ (2007) Glycerol hydrogenolysis on carbon-supported PtRu and AuRu bimetallic catalysts. J Catal 251:281–294

    Article  CAS  Google Scholar 

  • Mariscal R, Maireles-Torres P, Ojeda M, Sadaba I, Lopez Granados M (2016) Furfural: a renewable and versatile platform molecule for the synthesis of chemicals and fuels. Energy Environ Sci 9:1144–1189

    Article  CAS  Google Scholar 

  • McKendry P (2002) Energy production from biomass (part 3): gasification technologies. Bioresour Technol 83:55–63

    Article  CAS  Google Scholar 

  • McMillan JD (1994) Pretreatment of lignocellulosic biomass. In: Jimmel ME, Baker JO, Overend RP (eds) Enzymatic conversion of biomass for fuels production. American Chemical Society, Washington, DC, pp 292–324

    Chapter  Google Scholar 

  • Mohammadi M, Najafpour GD, Younesi H, Lahijani P, Uzir MH, Mohamed AR (2011) Bioconversion of synthesis gas to second generation biofuels. A review. Renew Sustain Energy Rev 15:4255–4273

    Article  CAS  Google Scholar 

  • Naik SN, Goud VV, Rout PK, Dalai AK (2010) Production of first and second generation biofuels: a comprehensive review. Renew Sustain Energy Rev 14:578–597

    Article  CAS  Google Scholar 

  • Nakagawa Y, Tamura M, Tomishige K (2014) Catalytic materials for the hydrogenolysis of glycerol to 1,3-propanediol. J Mater Chem A 2:6688–6702

    Article  CAS  Google Scholar 

  • Nanda S, Azargohar R, Dalai AK, Kozinski JA (2015) An assessment on the sustainability of lignocellulosic biomass for biorefining. Renew Sustain Energy Rev 50:925–941

    Article  CAS  Google Scholar 

  • NREL. https://www.nrel.gov/workingwithus/re-biomass.html. Accessed 22 June 2017

  • Octave S, Thomas D (2009) Biorefinery: toward an industrial metabolism. Biochimie 91:659–664

    Article  CAS  Google Scholar 

  • Okoye PU, Hameed BH (2016) Review on recent progress in catalytic carboxylation and acetylation of glycerol as a byproduct of biodiesel production. Renew Sustain Energy Rev 53:558–574

    Article  CAS  Google Scholar 

  • Ortiz ME, Bleckwedel J, Raya RR, Mozzi F (2013) Biotechnological and in situ food production of polyols by lactic acid bacteria. Appl Microbiol Biotechnol 97:4713–4726

    Article  CAS  Google Scholar 

  • Pagliaro M, Ciriminna R, Kimura H, Rossi M, Pina CD (2007) From glycerol to value-added product. Angew Chem Int Ed 46:4434–4440

    Article  CAS  Google Scholar 

  • Pandey A (ed) (2011) Biofuels: alternative feedstocks and conversion processes. Academic Press, Kidlington ISBN-13: 978-0123850997

    Google Scholar 

  • Pereira CSM, Silva VMTM, Rodrigues AE (2011) Ethyl lactate as a solvent: properties, applications and production processes—a review. Green Chem 13:2658–2671

    Article  CAS  Google Scholar 

  • Pileidis FD, Titirici M-M (2016) Levulinic acid biorefineries: new challenges for efficient utilization of biomass. Chem Sus Chem 9:562–582

    Article  CAS  Google Scholar 

  • Rafiqul ISM, Sakinah AMM (2013) Processes for the production of xylitol—a review. Food Rev Int 29:127–156

    Article  CAS  Google Scholar 

  • Ragauskas AJ, Beckham GT, Biddy MJ, Chandra R, Chen F, Davis MF, Davison BH, Dixon RA, Gilna P, Keller M, Langan P, Naskar AK, Saddler JN, Tschaplinski TJ, Tuskan GA, Wyman C (2014) Lignin valorization: Improving lignin processing in the biorefinery. Science 344:1246843

    Article  CAS  Google Scholar 

  • Rass HA, Essayem N, Besson M (2013) Selective aqueous phase oxidation of 5-hydroxymethylfurfural to 2,5-furandicarboxylic acid over Pt/C catalysts: influence of the base and effect of bismuth promotion. Green Chem 15:2240–2251

    Article  CAS  Google Scholar 

  • Ribeiro LS, Órfão JJM, Pereira MFR (2015) Enhanced direct production of sorbitol by cellulose ball-milling. Green Chem 17:2973–2980

    Article  CAS  Google Scholar 

  • Ribeiro LS, Delgado JJ, de Melo Órfão JJ, Pereira MFR (2016) A one-pot method for the enhanced production of xylitol directly from hemicellulose (corncob xylan). RSC Adv 6:95320–95327

    Article  CAS  Google Scholar 

  • Roquette/DSM (2008) Press release. https://www.dsm.com/corporate/about/business-entities/dsm-biobased-productsandservices/reverdia.html. Accessed 22 June 2017

  • Roquette. https://www.roquette.com/industries/performance-materials/polycarbonates/. Accessed 22 June 2017

  • Rose M, Palkovits R (2011) Cellulose-based sustainable polymers: state of the art and future trends. Macromol Rapid Commun 32:1299–1311

    Article  CAS  Google Scholar 

  • Rose M, Palkovits R (2012) Isosorbide as a renewable platform chemical for versatile applications—quo vadis? ChemSusChem 5:167–176

    Article  CAS  Google Scholar 

  • Rout PK, Nannaware AD, Prakash O, Kalra A, Rajasekharan R (2016) Synthesis of hydroxymethylfurfural from cellulose using green processes: a promising biochemical and biofuel feedstock. Chem Eng Sci 142:318–346

    Article  CAS  Google Scholar 

  • Saha B, Abu-Omar MM (2014) Advances in 5-hydroxymethylfurfural production from biomass in biphasic solvents. Green Chem 16:24–38

    Article  CAS  Google Scholar 

  • Santacesaria E, Tesser R, Di Serio M, Casale L, Verde D (2010) New process for producing epichlorohydrin via glycerol chlorination. Ind Eng Chem Res 49:964–970

    Article  CAS  Google Scholar 

  • Sarkar N, Ghosh SK, Bannerjee S, Aikat K (2012) Bioethanol production from agricultural wastes: an overview. Renew Energ 37:19–27

    Article  CAS  Google Scholar 

  • Schultz EL, de Souza DT, Damaso MCT (2014) The glycerol biorefinery: a purpose for Brazilian biodiesel production. Chem Biol Technol Agric 1:7

    Article  CAS  Google Scholar 

  • Schwab A, Warner E, Lewis J (2016) Survey of non-starch ethanol and renewable hydrocarbon biofuels producers. NREL/TP- 6A10-65519. www.nrel.gov/publications

  • Serrano-Ruiz JC, Dumesic JA (2011) Catalytic routes for the conversion of biomass into liquid hydrocarbon transportation fuels. Energy Environ Sci 4:83–99

    Article  CAS  Google Scholar 

  • Singh J, Suhag M, Dhaka A (2015) Augmented digestion of lignocellulose by steam explosion, acid and alkaline pretreatment methods: a review. Carbohydr Polym 117:624–631

    Article  CAS  Google Scholar 

  • Subramani V, Gangwal SK (2008) A review of recent literature to search for an efficient catalytic process for the conversion of syngas to ethanol. Energy Fuels 22:814–839

    Article  CAS  Google Scholar 

  • Talebnia F, Karakashev D, Angelidaki I (2010) Production of bioethanol from wheat straw: an overview on pretreatment, hydrolysis and fermentation. Bioresour Technol 101:4744–4753

    Article  CAS  Google Scholar 

  • Transparency Market Research. http://www.transparencymarketresearch.com/glycerol.market.html. Accessed June 6, 2017

  • US EPA (2016) Advancing sustainable material management: Facts and figures report. https://www.epa.gov/smm/advancing-sustainable-materials-management-facts-and-figures-report. Accessed 22 June 2017

  • US Department of Energy, Biomass Resources. Available from https://energy.gov/eere/bioenergy/biomass-resources. Accessed 22 June 2017

  • Van Putten R-J, van der Waal JC, de Jong E, Rasrendra CB, Heeres HJ, de Vries JG (2013) Hydroxymethylfurfural, a versatile platform chemical made from renewable resources. Chem Rev 113:1499–1597

    Article  CAS  Google Scholar 

  • Verma S, Baig RBN, Nadagouda MN, Len C, Varma RS (2017) Sustainable pathway to furanics from biomass via heterogeneous organo-catalysis. Green Chem 19:164–168

    Article  CAS  Google Scholar 

  • Wang T, Nolte MW, Shanks BH (2014) Catalytic dehydration of C6 carbohydrates for the production of hydroxymethylfurfural (HMF) as a versatile platform chemical. Green Chem 16:548–572

    Article  CAS  Google Scholar 

  • Wang G, Tan X, Lv H, Zhao M, Wu M, Zhou J, Zhang X, Zhang L (2016) Highly selective conversion of cellobiose and cellulose to hexitols by ru-based homogeneous catalyst under acidic conditions. Ind Eng Chem Res 55:5263–5270

    Article  CAS  Google Scholar 

  • Werpy T, Petersen G, Aden A, Bozell J, Holladay J, White J, Manheim A et al (2004) In: Werpy T, Petersen G (eds) Top value added chemicals from biomass—vol. 1: results of screening for potential candidates from sugars and synthesis gas. Pacific Northwest National Laboratory, National Renewable Energy Laboratory and Department of Energy, Washington, DC

  • Whited GM, Feher FJ, Benko DA, Cervin MA, Chotani GK, McAuliffe JC, LaDuca RJ, Ben-Shoshan EA, Sanford KJ (2010) Technology update: development of a gas-phase bioprocess for isoprene-monomer production using metabolic pathway engineering. Ind Biotechnol 6:152–163

    Article  CAS  Google Scholar 

  • Yan K, Wu G, Lafleur T, Jarvis C (2014) Production, properties and catalytic hydrogenation of furfural to fuel additives and value-added chemicals. Renew Sust Energy Rev 38:663–676

    Article  CAS  Google Scholar 

  • Yang F, Hanna MA, Sun R (2012) Value-added uses for crude glycerol–a byproduct of biodiesel production. Biotechnol Biofuels 5:13

    Article  CAS  Google Scholar 

  • Yao K, Tang C (2013) Controlled polymerization of next-generation renewable monomers and beyond. Macromolecules 46:1689–1712

    Article  CAS  Google Scholar 

  • Zhang J, Li J, Wu S, Liu Y (2013) Advances in the catalytic production and utilization of sorbitol. Ind Eng Chem Res 52:11799–11815

    Article  CAS  Google Scholar 

  • Zhang X, Durndell LJ, Isaacs MA, Parlett CMA, Lee AF, Wilson K (2016) Platinum-catalyzed aqueous-phase hydrogenation of d-glucose to d-sorbitol. ACS Catal 6:7409–7417

    Article  CAS  Google Scholar 

  • Zheng P, Wereath K, Sun JB, van den Heuvel J, Zeng A (2006) Overexpression of genes of the dha regulon and its effects on cell growth, glycerol fermentation to 1,3-propanediol and plasmid stability in Klebsiella pneumoniae. Process Biochem 41:2160–2169

    Article  CAS  Google Scholar 

  • Zhu W, Yang H, Chen J, Chen C, Guo L, Gan H, Zhao X, Hou Z (2014) Efficient hydrogenolysis of cellulose into sorbitol catalyzed by a bifunctional catalyst. Green Chem 16:1534–1542

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sudhakar Takkellapati.

Additional information

Disclaimer: The views expressed in this article are those of the authors and do not necessarily represent the views or policies of the US Environmental Protection Agency. Any mention of trade names or commercial products does not constitute endorsement or recommendation for use.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Takkellapati, S., Li, T. & Gonzalez, M.A. An overview of biorefinery-derived platform chemicals from a cellulose and hemicellulose biorefinery. Clean Techn Environ Policy 20, 1615–1630 (2018). https://doi.org/10.1007/s10098-018-1568-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10098-018-1568-5

Keywords

Navigation