Skip to main content
Log in

A Host–Parasite System with Multiple Parasite Strains and Superinfection Revisited: The Global Dynamics

  • Regular Article
  • Published:
Acta Biotheoretica Aims and scope Submit manuscript

Abstract

In this paper, we revisit a host–parasite system with multiple parasite strains and superinfection proposed by Nowak and May (Proc R Soc Lond B 255(1342):81–89, 1994), and study its global dynamics when we relax the two strict conditions assumed therein. As for system with two parasite strains, we derive that the basic reproduction number \(R_0\) is the threshold condition for parasite extinction and the invasion reproduction number \(R_i^j\ (i,j=1,2,i\ne j)\) is the subthreshold condition for coexistence of two parasite strains. As for system with three parasite strains, we are surprised to discover the global stability of parasite-free and coexistence equilibrium, which is distinct from the previous result. Furthermore, for system with n strains, we obtain the global asymptotical stability of the parasite-free equilibrium, conjecture a general result on the global stability of coexistence equilibrium and provide two numerical examples to testify our conjecture.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  • Alizon S (2013) Co-infection and super-infection models in evolutionary. Interface Focus 3(6):20130,031

    Article  Google Scholar 

  • Antia R, Levin BR, May RM (1994) Within-host population dynamics and the evolution and maintenance of microparasite virulence. Am Nat 144(3):457–472

    Article  Google Scholar 

  • Boldin B, Diekmann O (2008) Superinfections can induce evolutionarily stable coexistence of pathogens. J Math Biol 56(5):635–672

    Article  Google Scholar 

  • Bremermann HJ, Thieme H (1989) A competitive exclusion principle for pathogen virulence. J Math Biol 27(2):179–190

    Article  Google Scholar 

  • Bull J (1994) Perspective: virulence. Evolution 48(5):1423–1437

    Google Scholar 

  • Choisy M, de Roode JC (2010) Mixed infections and the evolution of virulence: effects of resource competition, parasite plasticity, and impaired host immunity. Am Nat 175(5):E105–E118

    Article  Google Scholar 

  • Denysiuk R, Silva CJ, Torres DFM (2017) Multiobjective optimization to a TB–HIV/AIDS coinfection optimal control problem. Comp Appl Math 3:1–17

    Google Scholar 

  • Diekmann O, Heesterbeek J, Metz JA (1990) On the definition and the computation of the basic reproduction ratio \({R_0}\) in models for infectious diseases in heterogeneous populations. J Math Biol 28(4):365–382

    Article  Google Scholar 

  • van den Driessche P, Watmough J (2002) Reproduction numbers and sub-threshold endemic equilibria for compartmental models of disease transmission. Math Biosci 180(1):29–48

    Article  Google Scholar 

  • Frank SA (1992) A kin selection model for the evolution of virulence. Proc R Soc Lond B 250(1329):195–197

    Article  Google Scholar 

  • Futuyma DJ (2013) The evolution of evolutionary ecology. Isr J Ecol Evol 59(4):172–180

    Article  Google Scholar 

  • Hood M (2003) Dynamics of multiple infection and within-host competition by the anther-smut pathogen. Am Nat 162(1):122–133

    Article  Google Scholar 

  • Huijben S, Nelson WA, Wargo AR, Sim DG, Drew DR, Read AF (2010) Chemotherapy, within-host ecology and the fitness of drug-resistant malaria parasites. Evolution 64(10):2952–2968

    Google Scholar 

  • Iannelli M, Martcheva M, Li X (2005) Strain replacement in an epidemic model with super-infection and perfect vaccination. Math Biosci 195(1):23–46

    Article  Google Scholar 

  • Li MY, Wang L (1998) A criterion for stability of matrices. J Math Anal Appl 225(1):249–264

    Article  Google Scholar 

  • Li MY, Graef JR, Wang L, Karsai J (1999) Global dynamics of a SEIR model with varying total population size. Math Biosci 160(2):191–213

    Article  Google Scholar 

  • Liu X, Chen X, Takeuchi Y (2011) Dynamics of an SIQS epidemic model with transport-related infection and exit-entry screenings. J Theor Biol 285(1):25–35

    Article  Google Scholar 

  • Martcheva M, Thieme HR (2003) Progression age enhanced backward bifurcation in an epidemic model with super-infection. J Math Biol 46(5):385–424

    Article  Google Scholar 

  • May RM, Anderson RM (1990) Parasite–host coevolution. Parasitology 100(S1):S89–S101

    Article  Google Scholar 

  • Mosquera J, Adler FR (1998) Evolution of virulence: a unified framework for coinfection and superinfection. J Theor Biol 195(3):293–313

    Article  Google Scholar 

  • Nowak MA, May RM (1994) Superinfection and the evolution of parasite virulence. Proc R Soc Lond B 255(1342):81–89

    Article  Google Scholar 

  • Pugliese A (2002) On the evolutionary coexistence of parasite strains. Math Biosci 177:355–375

    Article  Google Scholar 

  • Read AF, Taylor LH (2001) The ecology of genetically diverse infections. Science 292(5519):1099–1102

    Article  Google Scholar 

  • Stunzenas V (2001) Parasite–host interaction: a new point of view on immune regulation. Acta Zool Lituanica 11(4):405–416

    Article  Google Scholar 

  • Xu D, Sandland GJ, Minchella DJ, Feng Z (2012) Interactions among virulence, coinfection and drug resistance in a complex life-cycle parasite. J Theor Biol 304:197–210

    Article  Google Scholar 

  • Zhang P, Sandland GJ, Feng Z, Xu D, Minchella DJ (2007) Evolutionary implications for interactions between multiple strains of host and parasite. J Theor Biol 248(2):225–240

    Article  Google Scholar 

Download references

Acknowledgements

We are grateful to the editors and the anonymous referees for their careful reading and helpful comments which led to an improvement of our manuscript. L. Liu is supported by the National Natural Science Foundation of China (11601239) and Scientific and Technologial Innovation Programs of Higher Education Institutions in Shanxi (ISTP). X. Liu is supported by the National Natural Science Foundation of China (11671327). X. Ren is supported by the National Natural Science Foundation of China (11901477).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xianning Liu.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Appendices

Appendix A: Equivalency of Inequality (7)

Proof

Firstly, we show that \(R_1^2>1\) implies that \(x^*>0\). Note that \(R_1^2>1\) can be rewritten as \(\left[\frac{R_1}{R_2}>1+\frac{su(R_2-1)}{u+v_1}\right]\), which yields that \(\left[R_1-R_2>\frac{su(R_2-1)}{u+v_1}\cdot \frac{\beta_2 k}{u(u+v_2)}\right]\). Thus, we have \(\left[\frac{u}{k}(u+v_1)(u+v_2)(R_1-R_2)+us{\beta_2}>su{\beta_2} R_2>0\right]\), which can guarantee that \(x^*>0\).

Next, we show the conclusion holds under the condition \(x^*>0\). We now show that \(x^*>{(u+v_1)}/{\beta _1}\) is equivalent to the inequality \(R_2^1>1\). It follows from \(x^*>{(u+v_1)}/{\beta _1}\) that we have

$$\begin{aligned} \frac{ks\beta _2}{\frac{u}{k}(u+v_2)(u+v_1)(R_1-R_2)+us\beta _2} >\frac{u+v_1}{\beta _1}, \end{aligned}$$

which can be rewritten as

$$\begin{aligned} R_1>1+\frac{(u+v_2)(u+v_1)}{ks\beta _2}(R_1-R_2). \end{aligned}$$

That is,

$$\begin{aligned} R_1>1+\frac{u+v_2}{s\beta _2}\cdot \frac{\beta _1}{u}\left( 1-\frac{R_2}{R_1}\right) . \end{aligned}$$

Thus, one has

$$\begin{aligned} (R_1-1)\cdot \frac{s\beta _2}{u+v_2}\cdot \frac{u}{\beta _1}>1-\frac{R_2}{R_1}. \end{aligned}$$

Therefore, we have

$$\begin{aligned} R_2^1=\frac{R_2}{R_1} +\frac{s\beta _2}{u+v_2}\cdot \frac{u}{\beta _1}(R_1-1)>1. \end{aligned}$$

Similarly, \(x^*<{(u+v_2)}/{\beta _2}\) is equivalent to \(R_1^2>1\). \(\square \)

Appendix B: Proof of Theorem 2

Proof

The Jacobian matrix at \(E_0\) for the right hand side of system (2) is given by

$$\begin{aligned} J(E_0)=\begin{bmatrix} -u&-\beta _1 x_0&-\beta _2 x_0\\ 0&(u+v_1)(R_1-1)&0\\ 0&0&(u+v_2)(R_2-1) \end{bmatrix}. \end{aligned}$$

It is easy to see that the eigenvalues of \(J(E_0)\) are \(\lambda _1=-u,\lambda _2=(u+v_1)(R_1-1),\lambda _3=(u+v_2)(R_2-1)\). Noting that \(R_0<1\), we can conclude that all eigenvalues of \(J(E_0)\) are negative. When \(R_0>1\), \(J(E_0)\) has at least one positive eigenvalue. Hence, the parasite-free equilibrium \(E_0\) is locally asymptotically stable if \(R_0<1\) and is unstable if \(R_0>1\). This completes the proof. \(\square \)

Appendix C: Proof of Theorem 3

Proof

The Jacobian matrix at \(\bar{E}_1\) for the right hand side of system (2) is given by

$$\begin{aligned} J(\bar{E}_1)=\begin{bmatrix} -uR_1&-\beta _1 \bar{x}_1&-\beta _2\bar{x}_1\\ \beta _1\bar{y}_1&0&-s\beta _2\bar{y}_1\\ 0&0&(u+v_2)(R_2^1-1) \end{bmatrix} \end{aligned}$$

and its second additive compound matrix is

$$\begin{aligned} J^{[2]}(\bar{E}_1)= \begin{bmatrix} -uR_1&-s\beta _2\bar{y}_1&\beta _2\bar{x}_1\\ 0&-uR_1+(u+v_2)(R_2^1-1)&-\beta _1 \bar{x}_1\\ 0&\beta _1\bar{y}_1&(u+v_2)(R_2^1-1) \end{bmatrix}. \end{aligned}$$

Then, one has

$$\begin{aligned} \mathrm{tr}(J(\bar{E}_1))&=-uR_1+(u+v_2)(R_2^1-1)<0,\\ \det (J(\bar{E}_1))&=(u+v_2)(R_2^1-1)\cdot \beta _1^2\bar{x}_1\bar{y}_1<0,\\ \det (J^{[2]}(\bar{E}_1))&=-uR_1[(u+v_2)^2(R_2^1-1)^2+\beta _1^2\bar{x}_1\bar{y}_1]<0 \end{aligned}$$

hold if \(R_2^1<1\). Thus, it follows from Lemma 2.1 that \(J(\bar{E}_1)\) is stable when \(R_2^1<1\). When \(R_2^1>1\), \(J(\bar{E}_1)\) has at least one positive eigenvalue. Thus, \(\bar{E}_1\) is locally asymptotically stable if \(R_2^1<1\) and it is unstable if \(R_2^1>1\). This finishes the proof of Theorem 3. \(\square \)

Appendix D: Proof of Existence of \({E}^*\)

Proof

By using (22), one has

$$\begin{aligned} y_2^*&=\frac{1}{s}\left( x^*+sy^*-\frac{u+v_2}{\beta _2}\right) :=h_2 \end{aligned}$$
(23)

if \(h_2>0\). Furthermore, we have

$$\begin{aligned} y_1^*&=\frac{1}{s}\left[ x^*+sy^*-\frac{u+v_1}{\beta _1}-s\left( 1+\frac{\beta _2}{\beta _1}\right) y^*_2\right] \nonumber \\ \quad&=\frac{1}{s}\left[ -\frac{\beta _2}{\beta _1}(x^*+sy^*)+\frac{u+v_2}{\beta _2}+\frac{v_2-v_1}{\beta _1}\right] :=h_1 \end{aligned}$$
(24)

if \(h_1>0\). Substituting (23) and (24) into (20) yields the first relation of \(x^*\) and \(y^*\).

It follows from system (2) that we obtain

$$\begin{aligned} y^*=y_1^*+y_2^*=\frac{1}{s\beta _2}\left[ (v_2-v_1)-(\beta _2-\beta _1)x^*\right] , \end{aligned}$$
(25)

which is derived according to the subtracting between the second and third equations. Thus, we have the other relation of \(x^*\) and \(y^*\). Combining those two relations, we can solve the positive solution \(E^*\) of system (2) in this specific way.

Appendix E: Proof of Existence of \(\widetilde{E}^*\)

Proof

It follows from (22) that we have

$$\begin{aligned} \widetilde{y}_3^*&=\frac{1}{s}\left( \widetilde{x}^*+s\widetilde{y}^*-\frac{u+v_3}{\beta _3}\right) :=H_3 \end{aligned}$$
(26)

if \(H_3>0\). Furthermore, we have

$$\begin{aligned} \widetilde{y}_2^*&=\frac{1}{s}\left[ \widetilde{x}^*+s\widetilde{y}^*-\frac{u+v_2}{\beta _2}-s\left( 1+\frac{\beta _3}{\beta _2}\right) \widetilde{y}^*_3\right] \nonumber \\ \quad&=\frac{1}{s}\left[ -\frac{\beta _3}{\beta _2}(\widetilde{x}^*+s\widetilde{y}^*)+\frac{u+v_3}{\beta _3}+\frac{v_3-v_2}{\beta _2}\right] :=H_2 \end{aligned}$$
(27)

if \(H_2>0\) and

$$\begin{aligned} \widetilde{y}_1^*&=\frac{1}{s}\left[ \widetilde{x}^*+s\widetilde{y}^*-\frac{u+v_1}{\beta _1}-s\left( 1+\frac{\beta _3}{\beta _2}\right) \widetilde{y}^*_3 -s\left( 1+\frac{\beta _2}{\beta _1}\right) \widetilde{y}^*_2\right] \\ \quad&=\frac{1}{s}\left[ \frac{\beta _3}{\beta _1}(\widetilde{x}^*+s\widetilde{y}^*)-\frac{u+v_1}{\beta _1}+\frac{u+v_2}{\beta _2} -\frac{v_3-v_2}{\beta _1}-\frac{\beta _2}{\beta _1}\cdot \frac{u+v_3}{\beta _3}\right] :=H_1\nonumber \end{aligned}$$
(28)

if \(H_1>0\). Substituting (26)–(28) into (20) yields the first relation of \(\widetilde{x}^*\) and \(\widetilde{y}^*\).

It is easy to derive that

$$\begin{aligned} \widetilde{y}_1^*+\widetilde{y}_2^*&=\frac{1}{s\beta _3}\left[ (u+v_3)-\beta _3\widetilde{x}^*\right] ,\\ \widetilde{y}_1^*+\widetilde{y}_2^*&=\frac{1}{s\beta _2}\left[ (v_2-v_1)-(\beta _2-\beta _1)\widetilde{x}^*\right] . \end{aligned}$$

Here, the second equation is derived from the subtracting between the fourth and third equations. Combining the above two equations, we can solve

$$\begin{aligned} \widetilde{x}^*=\frac{\beta _2}{\beta _1}\left( \frac{u+v_3}{\beta _3}-\frac{v_2-v_1}{\beta _2}\right) :=H_0. \end{aligned}$$
(29)

if \(H_0>0\). Substituting (29) into the first relation of \(\widetilde{x}^*\) and \(\widetilde{y}^*\) yields that

$$\begin{aligned} A\widetilde{y}^*=B, \end{aligned}$$

where

$$\begin{aligned} A&=s\left( 1+\frac{\beta _3}{\beta _1}v_1-\frac{\beta _3}{\beta _2}v_2+v_3\right) ,\nonumber \\ B&=\frac{ks}{u}-s\left( \frac{\beta _2}{\beta _1}\cdot \frac{u+v_3}{\beta _3}-\frac{v_2-v_1}{\beta _1}\right) +v_3\left( \frac{u+v_3}{\beta _3}+\frac{v_2-v_1}{\beta _1}-\frac{\beta _2}{\beta _1}\cdot \frac{u+v_3}{\beta _3}\right) \\&\quad +v_2\left( \frac{u+v_3}{\beta _1}-\frac{u+v_3}{\beta _3}-\frac{v_3-v_2}{\beta _2}-\frac{\beta _3}{\beta _2}\cdot \frac{v_2-v_1}{\beta _1}\right) \\&\quad +v_1\left( \frac{\beta _3}{\beta _1}\cdot \frac{v_2-v_1}{\beta _1} -\frac{u+v_2}{\beta _2}-\frac{v_2-v_1}{\beta _1}+\frac{\beta _2}{\beta _1}\cdot \frac{u+v_3}{\beta _3}\right) . \end{aligned}$$

Thus, there exists a unique positive \(\widetilde{y}^*\) if and only if \(A\ne 0\), \(AB>0\) and \(H_i>0, i=0,1,2,3,4\). \(\square \)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Liu, L., Ren, X. & Liu, X. A Host–Parasite System with Multiple Parasite Strains and Superinfection Revisited: The Global Dynamics. Acta Biotheor 68, 201–225 (2020). https://doi.org/10.1007/s10441-019-09359-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10441-019-09359-7

Keywords

Mathematics Subject Classification

Navigation