Skip to main content
Log in

Laser interferometry of the hydrolytic changes in protein solutions: the refractive index and hydration shells

  • Original Paper
  • Published:
Journal of Biological Physics Aims and scope Submit manuscript

Abstract

Using an original laser interferometer of enhanced sensitivity, an increase in the refractive index of a protein solution was observed during the reaction of proteolysis catalyzed by pepsin. The increase in the refractive index of the protein solution at a concentration of 4 mg/ml was \( 9 \times 10^{-6} \) for bovine serum albumin and \(2.4 \times 10^{- 6}\) for lysozyme. The observed effect disproves the existing idea that the refractive index of protein solutions is determined only by their amino acid composition and concentration. It is shown that the refractive index also depends on the state of protein fragmentation. A mathematical model of proteolysis and a real-time method for estimating the state of protein hydration based on the measurement of refractive index during the reaction are proposed. A good agreement between the experimental and calculated time dependences of the refractive index shows that the growth of the surface of protein fragments and the change in the number of hydration cavities during proteolysis can be responsible for the observed effect.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. McMeekin, T.L., Wilensky, M., Groves, M.L.: Refractive indices of proteins in relation to amino acid composition and specific volume. Biochem. Biophys. Res. Commun. 7(2), 151 (1962). https://doi.org/10.1016/0006-291x(62)90165-1

    Article  Google Scholar 

  2. McMeekin, T.L., Groves, M.L., Hipp, N.J.: Refractive indices of amino acids, proteins, and related substances. Adv. Chem. Ser. 1, 54 (1964). https://doi.org/10.1021/ba-1964-0044.ch004

    Article  Google Scholar 

  3. Zhao, H., Brown, P.H., Schuck, P.: On the distribution of protein refractive index increments. Biophys. J. 100(9), 2309 (2011). https://doi.org/10.1016/j.bpj.2011.03.004

    Article  ADS  Google Scholar 

  4. Barer, R., Joseph, S.: Refractometry of living cells. J. Cell Sci. 3(32), 399 (1954)

    Google Scholar 

  5. Zhao, H., Brown, P.H., Magone, M.T., Schuck, P.: The molecular refractive function of lens \(\gamma \)-crystallins. J. Mol. Biol. 411(3), 680–699 (2011). https://doi.org/10.1016/j.jmb.2011.06.007

    Article  Google Scholar 

  6. Ball, V., Ramsden, J.J.: Buffer dependence of refractive index increments of protein solutions. Biopolymers 46(7), 489 (1998). https://doi.org/10.1002/(sici)1097-0282(199812)46:7<489::aid-bip6>3.0.co;2-e

    Article  Google Scholar 

  7. Cole, T., Kathman, A., Koszelak, S., McPherson, A.: Determination of local refractive index for protein and virus crystals in solution by mach-zehnder interferometry. Anal. Biochem. 231(1), 92 (1995). https://doi.org/10.1006/abio.1995.1507

    Article  Google Scholar 

  8. Yin, D.C., Inatomi, Y., Luo, H.M., Li, H.S., Lu, H.M., Ye, Y.J., Wakayama, N.I.: Interferometry measurement of protein concentration evolution during crystallization and dissolution with improved reliability and versatility. Meas. Sci. Technol. 19(4), 045303 (2008)

    Article  ADS  Google Scholar 

  9. Voros, J.: The density and refractive index of adsorbing protein layers. Biophys. J. 87(1), 553 (2004). https://doi.org/10.1529/biophysj.103.030072

    Article  ADS  Google Scholar 

  10. Markov, D.A., Swinney, K., Bornhop, D.J.: Label-free molecular interaction determinations with nanoscale interferometry. J. Am. Chem. Soc. 126(50), 16659 (2004). https://doi.org/10.1021/ja047820m

    Article  Google Scholar 

  11. Jepsen, S.T., Jorgensen, T.M., Zong, W., Trydal, T., Kristensen, S.R., Sorensen, H.S.: Evaluation of back scatter interferometry, a method for detecting protein binding in solution. The Analyst (Royal Society of Chemistry) 140(3), 895 (2015). https://doi.org/10.1039/C4AN01129E

    ADS  Google Scholar 

  12. Kabashin, A.V., Nikitin, P.I.: Surface plasmon resonance interferometer for bio- and chemical-sensors. Opt. Commun. 150(1–6), 5 (1998). https://doi.org/10.1016/s0030-4018(97)00726-8

    Article  ADS  Google Scholar 

  13. Homola, J.: Surface plasmon resonance sensors for detection of chemical and biological species. Chem. Rev. 108(2), 462 (2008). https://doi.org/10.1021/cr068107d

    Article  Google Scholar 

  14. Binhi, V.N., Sarimov, R.M.: Relaxation of liquid water states with altered stoichiometry. Biophysics 59(4), 515 (2014). https://doi.org/10.1134/S0006350914040058

    Article  Google Scholar 

  15. Sarimov, R.M., Matveyeva, T.A., Vasin, A.L., Binhi, V.N.: Changes in the refractive index of a solution during proteolysis of bovine serum albumin with pepsin. Biophysics 62(2), 177 (2017). https://doi.org/10.1134/S0006350917020221

    Article  Google Scholar 

  16. Srividhya, J., Schnell, S.: Why substrate depletion has apparent first-order kinetics in enzymatic digestion. Comput. Biol. Chem. 30(3), 209 (2006). https://doi.org/10.1016/j.compbiolchem.2006.03.003

    Article  MATH  Google Scholar 

  17. Bull, H.B., Currie, B.T.: Peptic hydrolysis of egg albumin. I. Kinetic studies. J. Am. Chem. Soc. 71(8), 2758 (1949)

    Article  Google Scholar 

  18. Sachdev, G.P., Fruton, J.S.: Kinetics of action of pepsin on fluorescent peptide substrates. Proc. Natl. Acad. Sci. U.S.A. 72(9), 3424 (1975)

    Article  ADS  Google Scholar 

  19. Born, M., Wolf, E.: Principles of Optics: Electromagnetic Theory of Propagation, Interference and Diffraction of Light, 7th edn. Cambridge University Press, Cambridge (1999)

    Book  MATH  Google Scholar 

  20. Zangi, R., Hagen, M., Berne, B.J.: Effect of ions on the hydrophobic interaction between two plates. J. Am. Chem. Soc. 129(15), 4678 (2007). https://doi.org/10.1021/ja068305m

    Article  Google Scholar 

  21. Tanford, C., Buzzell, J.G., Rands, D.G., Swanson, S.A.: The reversible expansion of bovine serum albumin in acid solutions. J. Am. Chem. Soc. 77(24), 6421 (1955). https://doi.org/10.1021/ja01629a003

    Article  Google Scholar 

  22. Keil, B.: Specificity of Proteolysis. Springer-Verlag, Berlin (1992)

    Book  Google Scholar 

  23. Gasteiger, E., Hoogland, C., Gattiker, A., Duvaud, S., Wilkins, M.R., Appel, R.D., Bairoch, A.: Protein identification and analysis tools on the ExPASy server. In: Walker, J.M. (ed.) The Proteomics Protocols Handbook, pp. 571–607. Humana Press, New Jersey (2005)

  24. Beaven, G.H., Holiday, E.R.: Ultraviolet absorption spectra of proteins and amino acids. Adv. Protein Chem. 7, 319 (1952). https://doi.org/10.1016/S0065-3233(08)60022-4

    Article  Google Scholar 

  25. Hayashi, K., Imoto, T., Funatsu, M.: Proteolysis of lysozyme-substrate complex. J. Fac. Agric. Kyushu Univ. 15, 387 (1969)

    Google Scholar 

  26. Dalgalarrondo, M., Dufour, E., Chobert, J.M., Bertrand-Harb, C., Haertle, T.: Proteolysis of \(\beta \)-lactoglobulin and \(\beta \)-casein by pepsin in ethanolic media. Int. Dairy J. 5(1), 1 (1995)

    Article  Google Scholar 

  27. Tam, J.J., Whitaker, J.R.: Rates and extents of hydrolysis of several caseins by pepsin, rennin, endothia parasitica protease and mucor pusillus protease. J. Dairy Sci. 55(11), 1523 (1972). https://doi.org/10.3168/jds.S0022-0302(72)85714-X

    Article  Google Scholar 

  28. Reddy, I.M., Kella, N.K., Kinsella, J.E.: Structural and conformational basis of the resistance of \(\beta \)-lactoglobulin to pectic and chymotryptic digestion. J. Agric. Food Chem. 36(4), 737 (1988). https://doi.org/10.1021/jf00082a015

    Article  Google Scholar 

  29. Schiebener, P., Straub, J., Levelt Sengers, J.M.H., Gallagher, J.S.: Refractive index of water and steam as function of wavelength, temperature and density. J. Phys. Chem. Ref. Data 19(3), 677 (1990). https://doi.org/10.1063/1.555859

    Article  ADS  Google Scholar 

  30. Harvey, A.H., Kaplan, S.G., Burnett, J.H.: Effect of dissolved air on the density and refractive index of water. Int. J. Thermophys. 26(5), 1495 (2005). https://doi.org/10.1007/s10765-005-8099-0

    Article  ADS  Google Scholar 

  31. Svergun, D.I., Richard, S., Koch, M.H.J., Sayers, Z., Kuprin, S., Zaccai, G.: Protein hydration in solution: Experimental observation by x-ray and neutron scattering. Proc. Natl. Acad. Sci. U.S.A. 95(5), 2267 (1998). https://doi.org/10.2307/44039

    Article  ADS  Google Scholar 

  32. Sushko, O., Dubrovka, R., Donnan, R.S.: Sub-terahertz spectroscopy reveals that proteins influence the properties of water at greater distances than previously detected. J. Chem. Phys. 142(5), 055101 (2015)

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to R. M. Sarimov.

Ethics declarations

Declaration of interest

The authors report no conflicts of interest.

Electronic supplementary material

Below is the link to the electronic supplementary material.

(PDF 548 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sarimov, R.M., Matveyeva, T.A. & Binhi, V.N. Laser interferometry of the hydrolytic changes in protein solutions: the refractive index and hydration shells. J Biol Phys 44, 345–360 (2018). https://doi.org/10.1007/s10867-018-9494-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10867-018-9494-7

Keywords

Navigation