Skip to main content
Log in

High-Resolution Measurements of Leakage Flow Inside the Hinge of a Large-scale Bileaflet Mechanical Heart Valve Hinge Model

  • Original Article
  • Published:
Cardiovascular Engineering and Technology Aims and scope Submit manuscript

Abstract

Purpose

It is believed that non-physiological leakage flow through hinge gaps during diastole contributes to thrombus formation in Bileaflet Mechanical Heart Valves (BMHVs). Because of the small scale and difficulty of experimental access, fluid dynamics inside the hinge cavity has not yet been characterised in detail. The objective is to investigate small-scale structure inside the hinge experimentally, and gain insight into its role in stimulating cellular responses.

Methods

An optically accessible scaled-up model of a BMHV hinge was designed and built, preserving dynamic similarity to a clinical BMHV. Particle Image Velocimetry (PIV) was used to visualize and quantify the flow fields inside the hinge at physiological Reynolds number and dimensionless pressure drop. The flow was measured at in-plane and out-of-plane spatial resolution of 32 and 86 μm, respectively, and temporal resolution of \(297\,\mu\hbox{s}.\)

Results

Likely flow separation on the ventricular surface of the cavity has been observed for the first time, and is a source of unsteadiness and perhaps turbulence. The shear stress found in all planes exceeds the threshold of platelet activation, ranging up to 168 Pa.

Conclusions

The scale-up approach provided new insight into the nature of the hinge flow and enhanced understanding of its complexity. This study revealed flow features that may induce blood element damage.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7
Figure 8
Figure 9

Similar content being viewed by others

References

  1. Affeld, K., K. Schichl, and A. Ziemann. Flow separation in artificial heart valves. In: Physics of Separated Flows–Numerical, Experimental, and Theoretical Aspects, edited by K. Gersten. Wiesbaden: Springer Fachmedien Wiesbaden, 1993, pp. 184–191.

    Chapter  Google Scholar 

  2. Alemu, Y., and D. Bluestein. Flow-induced platelet activation and damage accumulation in a mechanical heart valve: numerical studies. Artif. Organs 31(9):677–688, 2007.

    Article  Google Scholar 

  3. Baber, U., S. Van der Zee, and V. Fuster. Anticoagulation for mechanical heart valves in patients with and without atrial fibrillation. Curr. Cardiol. Rep. 12(2):133–139, 2010.

    Article  Google Scholar 

  4. Bellofiore, A., E. M. Donohue, and N. J. Quinlan. Scale-up of an unsteady flow field for enhanced spatial and temporal resolution of PIV measurements: application to leaflet wake flow in a mechanical heart valve. Exp. Fluid 51:161–176, 2011a.

    Article  Google Scholar 

  5. Bellofiore, A., and N. J. Quinlan. High-resolution measurement of the unsteady velocity field to evaluate blood damage induced by a mechanical heart valve. Ann. Biomed. Eng. 39:2417–2429, 2011b.

    Article  Google Scholar 

  6. Bluestein, D., K. B. Chandran, and K. B. Manning. Towards non-thrombogenic performance of blood recirculating devices. Ann. Biomed. Eng. 38:1236–1256, 2010.

    Article  Google Scholar 

  7. Brennan, J. M., F. H. Edwards, Y. Zhao, S. O’Brien, M. E. Booth, R. S. Dokholyan, P. S. Douglas, and E. D. Peterson. Long-term safety and effectiveness of mechanical versus biologic aortic valve prostheses in older patients: results from the Society of Thoracic Surgeons Adult Cardiac Surgery National Database. Circulation 127(16):1647–1655, 2013. https://doi.org/10.1161/CIRCULATIONAHA.113.002003

    Article  Google Scholar 

  8. Brown C. H., L. B. Leverett, C. W. Lewis, C. P. Alfrey, and J. D. Hellums. Morphological, biochemical, and functional changes in human platelets subjected to shear stress. J. Lab. Clin. Med. 86(3):462–471, 1975.

    Google Scholar 

  9. Butany, J., M. S. Ahluwalia, C. Munroe, C. Fayet, C. Ahn, P. Blit, C. Kepron, R. J. Cusimano, and R. L. Leask. Mechanical heart valve prostheses: identification and evaluation (erratum). Cardiovasc. Pathol. 12(6):322–344, 2003.

    Article  Google Scholar 

  10. Butchart, E. G. Antithrombotic management in patients with prosthetic valves: a comparison of American and European guidelines. Heart 95(5):430–436, 2009. https://doi.org/10.1136/hrt.2007.134726

    Article  Google Scholar 

  11. Cannegieter, S. C., F.R. Rosendaal, and E. Briet. Thromboembolic and bleeding complications in patients with mechanical heart valve prostheses. Circulation 89(2):635–641, 1994. https://doi.org/10.1161/01.CIR.89.2.635

    Article  Google Scholar 

  12. Chandran, K. B. Dynamics behavior analysis of mechanical heart valves prostheses. In: Biomechanical Systems: Techniques and Applications, Vol. II: Cardiovascular Techniques II:3-6–3-29. Boca Raton: CRC Press, 2000.

  13. DeWall, R. A., N. Qasim, and L. Carr. Evolution of mechanical heart valves. Ann. Thorac. Surg. 69(5):1612–1621, 2000.

    Article  Google Scholar 

  14. Ellis, J. T. An in vitro investigation of the leakage and hinge flow fields through bileaflet mechanical heart valves and their relevance to thrombogenesis. Dissertation, Georgia Institute of Technology, 1999.

  15. Ellis, J. T., T. M. Healy, A. A. Fontaine, R. Saxena, and A.P. Yoganathan. Velocity measurements and flow patterns within the hinge region of a Medtronic Parallel bileaflet mechanical valve with clear housing. J. Heart Valve Dis. 5:591–599, 1996.

    Google Scholar 

  16. Ellis, J. T., B. R. Travis, and A. P. Yoganathan. An in vitro study of the hinge and near-field forward flow dynamics of the St. Jude Medical Regent bileaflet mechanical heart valve. Ann. Biomed. Eng. 28:524–532, 2000.

    Article  Google Scholar 

  17. Fallon, A. M., N. Shah, U. M. Marzec, J. N. Warnock, A. P. Yoganathan, and S. R. Hanson. Flow and thrombosis at orifices simulating mechanical heart valve leakage regions. J. Biomech. Eng. 128(1):30, 2006. https://doi.org/10.1115/1.2133768

    Article  Google Scholar 

  18. Gott, V. L., D. E. Alejo, and D. E. Cameron. Mechanical heart valves: 50 years of evolution. Ann. Thorac. Surg. 76(6):S2230–S2239, 2003. https://doi.org/10.1016/j.athoracsur.2003.09.002

    Article  Google Scholar 

  19. Govindarajan, V., H. S. Udaykumar, L. H. Herbertson, S. Deutsch, K. B. Manning, and K. B. Chandran. Impact of design parameters on bileaflet mechanical heart valve flow dynamics. J. Heart Valve Dis. 18(5):535–545, 2009. http://www.scopus.com/inward/record.url?eid=2-s2.0-77449122865&partnerID=40&md5=a6a976c71a80a9b4d0c4f8697bd80476.

  20. Hammermeister, K., G. K. Sethi, W. G. Henderson, F. L. Grover, C. Oprian, and S. H. Rahimtoola. Outcomes 15 years after valve replacement with a mechanical versus a bioprosthetic valve: final report of the veterans affairs randomized trial. J. Am. Coll. Cardiol. 36(4):1152–1158, 2000.

    Article  Google Scholar 

  21. Hellums, J., D. Peterson, N. Stathopoulos, J. Moake, and T. Giorgio. Studies on the mechanisms of shear-induced platelet activation. In: Cerebral Ischemia and Hemorheology, edited by A. Hartmann and W. Kuschinsky. Berlin: Springer, 1987, pp. 80–89.

    Chapter  Google Scholar 

  22. Herbertson, L. H., S. Deutsch, and K. B. Manning. Near valve flows and potential blood damage during closure of a bileaflet mechanical heart valve. J. Biomech. Eng. 133:094507, 2011.

    Article  Google Scholar 

  23. Jun, B. H., N. Saikrishnan, and A. P. Yoganathan. Micro particle image velocimetry measurements of steady diastolic leakage flow in the hinge of a St. Jude medical regent mechanical heart valve. Ann. Biomed. Eng. 42:526–540, 2014.

    Article  Google Scholar 

  24. Kameneva, M. V., G. W. Burgreen, K. Kono, B. Repko, J. F. Antaki, and M. Umezu. Effects of turbulent stresses upon mechanical hemolysis: experimental and computational analysis. ASAIO J. 50(5):418–423, 2004.

    Article  Google Scholar 

  25. Kaneko, T., and S. F. Aranki. Anticoagulation for prosthetic valves. Thrombosis 2013:346752, 2013.

    Article  Google Scholar 

  26. Klusak, E., A. Bellofiore, S. Loughnane, and N. J. Quinlan. High-resolution measurements of velocity and shear stress in leakage jets from bileaflet mechanical heart valve hinge models. J. Biomech. Eng. 137(11):111008, 2015.

    Article  Google Scholar 

  27. Leverett, L. B., J. D. Hellums, C. P. Alfrey, and E. C. Lynch. Red blood cell damage by shear stress. Biophys. J. 12:257–273, 1972.

    Article  Google Scholar 

  28. Manning, K. B., V. Kini, A. A. Fontaine, S. Deutsch, and J. M. Tarbell. Regurgitant flow field characteristics of the St. Jude bileaflet mechanical heart valve under physiologic pulsatile flow using particle image velocimetry. Artif. Organs 27:840–846, 2003.

    Article  Google Scholar 

  29. Nobili, M., U. Morbiducci, R. Ponzini, C. Del Gaudio, A. Balducci, M. Grigioni, F. M. Montevecchi, and A. Redaelli. Numerical simulation of the dynamics of a bileaflet prosthetic heart valve using a fluidstructure interaction approach. J. Biomech. 41:2539–2550, 2008.

    Article  Google Scholar 

  30. Paul, R., J. Apel, S. Klaus, F. Schügner, P. Schwindke, and H. Reul. Shear stress related blood damage in laminar couette flow. Artif. Organs 27:517–529, 2003.

    Article  Google Scholar 

  31. Pibarot, P., and J. G. Dumesnil. Prosthetic heart valves: selection of the optimal prosthesis and long-term management. Circulation 119(7):1034–1048, 2009.

    Article  Google Scholar 

  32. Quinlan, N. J., and P. N. Dooley. Models of flow-induced loading on blood cells in laminar and turbulent flow, with application to cardiovascular device flow. Ann. Biomed. Eng. 35(8):1347–1356, 2007. https://doi.org/10.1007/s10439-007-9308-8.

    Article  Google Scholar 

  33. Raffel, M., C. Willert, S. Wereley, and J. Kompenhans. Particle Image Velocimetry: A Practical Guide. Berlin: Springer, 2007.

    Book  Google Scholar 

  34. Raghav, V., S. Sastry, and N. Saikrishnan. Experimental assessment of flow fields associated with heart valve prostheses using particle image velocimetry (PIV): recommendations for best practices. Cardiovasc. Eng. Technol. 9:273–287, 2018.

    Article  Google Scholar 

  35. Sheriff, J., D. Bluestein, G. Girdhar, and J. Jesty. High-shear stress sensitizes platelets to subsequent low-shear conditions. Ann. Biomed. Eng. 38:1442–1450, 2010.

    Article  Google Scholar 

  36. Simon, H. A., L. Ge, I. Borazjani, F. Sotiropoulos, and A. P. Yoganathan. Simulation of the three-dimensional hinge flow fields of a bileaflet mechanical heart valve under aortic conditions. Ann. Biomed. Eng. 38:841–853, 2010a.

    Article  Google Scholar 

  37. Simon, H. A., L. Ge, F. Sotiropoulos, and A. P. Yoganathan. Numerical investigation of the performance of three hinge designs of bileaflet mechanical heart valves. Ann. Biomed. Eng. 38:3295–3310, 2010b.

    Article  Google Scholar 

  38. Simon, H. A., H. L. Leo, J. Carberry, and A. P. Yoganathan. Comparison of the hinge flow fields of two bileaflet mechanical heart valves under aortic and mitral conditions. Ann. Biomed. Eng. 32:1607–1617, 2004.

    Article  Google Scholar 

  39. Toole, J. M., M. R. Stroud, J. M. Kratz, A. J. Crumbley, S. M. Bradley, F. A. Crawford, and J. S. Ikonomidis. Twenty-five year experience with the St. Jude medical mechanical valve prosthesis. Ann. Thorac. Surg. 89(5):1402–1409, 2010. https://doi.org/10.1016/j.athoracsur.2010.01.045.

    Article  Google Scholar 

  40. Travis, B. R., H. L. Leo, P. A. Shah, D. H. Frakes, and A. P. Yoganathan. An analysis of turbulent shear stresses in leakage flow through a bileaflet mechanical prostheses. J. Biomech. Eng. 124:155, 2002.

    Article  Google Scholar 

  41. Vallana, F., S. Rinaldi, P. Galletti, A. Nguyen, and A. Piwnica. Pivot design in bileaflet valves. ASAIO J. 38:M600–M606, 1992.

    Article  Google Scholar 

  42. Wilke, A., C. M. Wende, M. Horst, and D. Steverding. Thrombosis of a prosthetic mitral valve after withdrawal of phenprocoumon therapy. Cardiol. Res. 2(6):298–300, 2011.

    Google Scholar 

  43. Williams, A. R., D. E. Hughes, and W. L. Nyborg. Hemolysis near a transversely oscillating wire. Science 169:871–873, 1970.

    Article  Google Scholar 

  44. Woo, Y. R., and A. P. Yoganathan. In vitro pulsatile flow velocity and shear stress measurements in the vicinity of mechanical mitral heart valve prostheses. J. Biomech. 19:39–51, 1986.

    Article  Google Scholar 

  45. Yoganathan, A. P., K. B. Chandran, and F. Sotiropoulos. Flow in prosthetic heart valves: state-of-the-art and future directions. Ann. Biomed. Eng. 33(12):1689–1694, 2005. https://doi.org/10.1007/s10439-005-8759-z

    Article  Google Scholar 

  46. Yoganathan, A. P., Z. He, and C. S. Jones. Fluid mechanics of heart valves. Ann. Biomed. Eng. 6:331–362, 2004.

    Article  Google Scholar 

  47. Yun, B. M., J. Wu, H. A. Simon, S. Arjunon, F. Sotiropoulos, C. K. Aidun, and A. P. Yoganathan. A numerical investigation of blood damage in the hinge area of aortic bileaflet mechanical heart valves during the leakage phase. Ann. Biomed. Eng. 40(7):1468–1485, 2012.

    Article  Google Scholar 

  48. Zhao, J. B., Y. B. Shi, T. J. Yeo, and N. H. Hwang. Digital particle image velocimetry investigation of the pulsating flow around a simplified 2-D model of a bileaflet heart valve. J Heart Valve Dis 10:239–253, 2001.

    Google Scholar 

  49. Zilla, P., J. Brink, P. Human, and D. Bezuidenhout. Prosthetic heart valves: catering for the few. Biomaterials 29(4):385–406, 2008. https://doi.org/10.1016/j.biomaterials.2007.09.033

    Article  Google Scholar 

Download references

Acknowledgements

The authors gratefully acknowledge the support of Science Foundation Ireland (SFI) under the Research Frontiers Programme.

Funding

This study was funded by Science Foundation Ireland (grant number 11/RFP.1/ENM/3310).

Conflict of Interest

The authors declared that they have no conflict of interest.

Ethical Approval

This article does not contain any studies with human participants or animals performed by any of the authors.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Nathan J. Quinlan.

Additional information

Associate Editor Ajit P. Yoganathan oversaw the review of this article.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Klusak, E., Quinlan, N.J. High-Resolution Measurements of Leakage Flow Inside the Hinge of a Large-scale Bileaflet Mechanical Heart Valve Hinge Model. Cardiovasc Eng Tech 10, 469–481 (2019). https://doi.org/10.1007/s13239-019-00423-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13239-019-00423-4

Keywords

Navigation