Skip to main content
Log in

Fabrication of Low-Cost Patient-Specific Vascular Models for Particle Image Velocimetry

  • Published:
Cardiovascular Engineering and Technology Aims and scope Submit manuscript

A Correction to this article was published on 25 July 2023

This article has been updated

Abstract

Purpose

Particle image velocimetry (PIV), an in vitro experimentation technique that optically measures velocity components to analyze fluid velocity fields, has become increasingly popular to study flow dynamics in various vascular territories. However, it can be difficult and expensive to create patient-specific clear models for PIV due to the importance of refractive index matching of the model and the fluid. We aim to implement and test the use of poly-vinyl alcohol (PVA) in a lost-core casting technique to create low-cost, patient-specific models for PIV.

Methods

Anonymized patient vascular anatomies were segmented and processed in Mimics/3Matic to create patient-specific cores from 3D digital subtraction angiographies. The cores were 3D-printed with PVA and post-processed with a 80:20 water:glue mixture to smooth the surface. Two silicones, Sylgard 184 and Solaris, were used to encapsulate the model and the PVA core was dissolved using warm water. Computed tomography scans were used to evaluate geometric accuracy using circumferences and surface differences in the model.

Results

Mean geometric differences in circumference along the inlet centerline and the mean surface difference in the aneurysm between the final Silicone Model and the desired STL Print geometry were statistically insignificant (0.6 mm, 95% CI [− 1.4, 2.8] and 0.3 mm 95% CI [− 0.1, 0.7], respectively). Particle illumination within each model was successful. The cost of one 10 cm × 10 cm × 5 cm model was $69.

Conclusion

This technique was successful to implement and test the use of PVA in a lost-core casting technique to create low-cost, patient-specific in vitro models for PIV experimentation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5

Change history

References

  1. Arcaute, K., and R. B. Wicker. Patient-specific compliant vessel manufacturing using dip-spin coating of rapid prototyped molds. J. Manuf. Sci. Eng. 130:1–13, 2008.

    Article  Google Scholar 

  2. Bai, K., and J. Katz. On the refractive index of sodium iodide solutions for index matching in PIV. Exp. Fluids 55:1–6, 2014.

    Article  CAS  Google Scholar 

  3. Brunette, J., R. Mongrain, and J. C. Tardif. A realistic coronary artery phantom for particle image velocimetry. J. Vis. 7:241–248, 2004.

    Article  Google Scholar 

  4. Buchoux, A., P. Valluri, S. Smith, A. A. Stokes, P. R. Hoskins, and V. Sboros. Manufacturing of microcirculation phantoms using rapid prototyping technologies. In: Proceedings of Annual International Conference of the IEEE Engineering in Medicine and Biology Society, pp. 5908–5911, 2015.

  5. Büsen, M., T. A. S. Kaufmann, M. Neidlin, U. Steinseifer, and S. J. Sonntag. In vitro flow investigations in the aortic arch during cardiopulmonary bypass with stereo-PIV. J. Biomech. 48:2005–2011, 2015.

    Article  PubMed  Google Scholar 

  6. Despotović, I., B. Goossens, and W. Philips. MRI segmentation of the human brain: Challenges, methods, and applications. Comput. Math. Methods Med. 2015:1–23, 2015.

    Article  Google Scholar 

  7. Falk, K. L., D. R. Rutkowski, S. Schafer, A. Roldán-Alzate, E. L. Oberstar and C. Strother. Impact of image reconstruction parameters when using 3D DSA reconstructions to measure intracranial aneurysms. J. Neurointerv. Surg. 10:285–289, 2017.

    Article  PubMed  Google Scholar 

  8. Ford, M. D., H. N. Nikolov, J. S. Milner, S. P. Lownie, E. M. DeMont, W. Kalata, F. Loth, D. W. Holdsworth, and D. A. Steinman. PIV-measured versus CFD-predicted flow dynamics in anatomically realistic cerebral aneurysm models. J. Biomech. Eng. 130:021015, 2008.

    Article  PubMed  Google Scholar 

  9. Geoghegan, P. H., N. A. Buchmann, J. Soria, and M. C. Jermy. Time-resolved PIV measurements of the flow field in a stenosed, compliant arterial model. Exp. Fluids 54:1–19, 2013.

    Article  Google Scholar 

  10. Geoghegan, P. H., N. A. Buchmann, C. J. T. Spence, S. Moore, and M. Jermy. Fabrication of rigid and flexible refractive-index-matched flow phantoms for flow visualisation and optical flow measurements. Exp. Fluids 52:1331–1347, 2012.

    Article  CAS  Google Scholar 

  11. Gülan, U., B. Lüthi, M. Holzner, A. Liberzon, A. Tsinober, and W. Kinzelbach. Experimental study of aortic flow in the ascending aorta via Particle Tracking Velocimetry. Exp. Fluids 53:1469–1485, 2012.

    Article  Google Scholar 

  12. Hütter, L., P. H. Geoghegan, P. D. Docherty, M. S. Lazarjan, and D. Clucas. Fabrication of a compliant phantom of the human aortic arch for use in Particle Image Velocimetry (PIV) experimentation. Curr. Dir. Biomed. Eng. 2:493–497, 2016.

    Article  Google Scholar 

  13. Johnston, I. D., D. K. McCluskey, C. K. L. Tan, and M. C. Tracey. Mechanical characterization of bulk Sylgard 184 for microfluidics and microengineering. J. Micromech. Microeng. 24:1–7, 2014.

    Article  Google Scholar 

  14. Kitajima, H. D., K. S. Sundareswaran, T. Z. Teisseyre, G. W. Astary, W. J. Parks, O. Skrinjar, J. N. Oshinski, and A. P. Yoganathan. Comparison of Particle Image Velocimetry and Phase Contrast MRI in a Patient-Specific Extracardiac Total Cavopulmonary Connection. J. Biomech. Eng. 130:041004, 2008.

    Article  PubMed  Google Scholar 

  15. Laumen, M., T. Kaufmann, D. Timms, P. Schlanstein, S. Jansen, S. Gregory, K. C. Wong, T. Schmitz-Rode, and U. Steinseifer. Flow analysis of ventricular assist device inflow and outflow cannula positioning using a naturally shaped ventricle and aortic branch. Artif. Organs 34:798–806, 2010.

    Article  PubMed  Google Scholar 

  16. Leo, H. L., L. P. Dasi, J. Carberry, H. A. Simon, and A. P. Yoganathan. Fluid dynamic assessment of three polymeric heart valves using particle image velocimetry. Ann. Biomed. Eng. 34:936–952, 2006.

    Article  PubMed  Google Scholar 

  17. Lieber, B. B., V. Livescu, L. N. Hopkins, and A. K. Wakhloo. Particle image velocimetry assessment of stent design influence on intra-aneurysmal flow. Ann. Biomed. Eng. 30:768–777, 2002.

    Article  PubMed  Google Scholar 

  18. Medero, R., C. Hoffman, and A. Roldán-Alzate. Comparison of 4D flow MRI and particle image velocimetry using an in vitro carotid bifurcation model. Ann. Biomed. Eng. 46:2112–2122, 2018.

    Article  PubMed  PubMed Central  Google Scholar 

  19. Morino, T., T. Tanoue, S. Tateshima, F. Vinuela, and K. Tanishita. Intra-aneurysmal blood flow based on patient-specific CT angiogram. Exp. Fluids 49:485–496, 2010.

    Article  Google Scholar 

  20. Raffel, M., C. E. Willert, S. Wereley, and J. Kompenhans. Particle Image Velocimetry. Berlin: Springer, p. 448, 2007.

    Book  Google Scholar 

  21. Rutkowski, D. R., R. Medero, F. J. Garcia, and A. Roldán-Alzate. MRI-based modeling of spleno-mesenteric confluence flow. J Biomech 88:95–103, 2019.

    Article  PubMed  PubMed Central  Google Scholar 

  22. Scholz, P., I. Reuter, and D. Heitmann. PIV measurements of the flow through an intake port using refractive index matching. In: 16th International Symposiyum on Applications of Laser Techniques to Fluid Mechanics, 2012.

  23. Smith, R. F., B. K. Rutt, and D. W. Holdsworth. Anthropomorphic carotid bifurcation phantom for MRI applications. J. Magn. Reson. Imaging 10:533–544, 1999.

    Article  CAS  PubMed  Google Scholar 

  24. Solaris®. Technical data sheet, clear silicone encapsulating Rubber, Smooth-On. Macungie, PA.

  25. Stoiber, M., T. Schlöglhofer, P. Aigner, C. Grasl, and H. Schima. An alternative method to create highly transparent hollow models for flow visualization. Int. J. Artif. Organs 36:131–134, 2013.

    Article  PubMed  Google Scholar 

  26. Sulaiman, A., L. Boussel, F. Taconnet, J. M. Serfaty, H. Alsaid, C. Attia, L. Huet, and P. Douek. In vitro non-rigid life-size model of aortic arch aneurysm for endovascular prosthesis assessment. Eur. J. Cardio-Thoracic Surg. 33:53–57, 2008.

    Article  Google Scholar 

  27. SYLGARDTM 184. Technical data sheet, The Dow Corning Company. Midland, MI.

  28. Taylor, T. W., and T. Yamaguchi. Three-dimensional simulation of blood flow in an abdominal aortic aneurysm using steady and unsteady computational methods. J. Biomech. Eng. 22:229–232, 1992.

    Google Scholar 

  29. Töger, J., S. Bidhult, J. Revstedt, M. Carlsson, and E. Heiberg. Independent validation of four-dimensional flow MR velocities and vortex ring volume using particle imaging velocimetry and planar laser-Induced fluorescence. Magn. Reson. Med. 75:1064–1075, 2016.

    Article  PubMed  Google Scholar 

  30. Wohl, C. J., F. L. Palmieri, J. W. Hopkins, A. M. Jackson, J. W. Connell, Y. Lin, and A. A. Cisotto. Flexible micropost arrays for shear stress measurement. In: NASA Scientific Technical Information, pp. 1–33, 2015.

  31. Wright, S. F., I. Zadrazil, and C. N. Markides. A review of solid–fluid selection options for optical-based measurements in single-phase liquid, two-phase liquid–liquid and multiphase solid–liquid flows. Exp. Fluids 58:1–39, 2017.

    Article  CAS  Google Scholar 

  32. Yagi, T., A. Sato, M. Shinke, S. Takahashi, Y. Tobe, H. Takao, Y. Murayama, and M. Umezu. Experimental insights into flow impingement in cerebral aneurysm by stereoscopic particle image velocimetry: Transition from a laminar regime. J. R. Soc. Interface 10:1–14, 2013.

    Article  Google Scholar 

  33. Yazdi, S. G., P. H. Geoghegan, P. D. Docherty, M. Jermy, and A. Khanafer. A review of arterial phantom fabrication methods for flow measurement using PIV techniques. Ann. Biomed. Eng. 46:1697–1721, 2018.

    Article  PubMed  Google Scholar 

  34. Yip, R., R. Mongrain, A. Ranga, J. Brunette, and R. Cartier. Development of anatomically correct mock-ups of the aorta for PIV investigations. In: Proceedings of the Canadian Design Engineering Network Conference, pp. 1–10, 2004.

Download references

Acknowledgements

Funding for this project was partially supported by a National Institutes of Health K12-DK100022 Grant (Dr. Roldán-Alzate).

Author Contributions

All authors have contributed to the material presented in this manuscript and this material has not been submitted for publication elsewhere.

Conflict of interest

K.L. Falk, R. Medero and A. Roldán-Alzate declare that they have no conflicts of interest to report.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Alejandro Roldán-Alzate.

Additional information

Associate Editor Ajit P. Yoganathan oversaw the review of this article.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Falk, K.L., Medero, R. & Roldán-Alzate, A. Fabrication of Low-Cost Patient-Specific Vascular Models for Particle Image Velocimetry. Cardiovasc Eng Tech 10, 500–507 (2019). https://doi.org/10.1007/s13239-019-00417-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13239-019-00417-2

Keywords

Navigation