Skip to main content
Log in

In Vitro Selection of DNA Aptamers for a Small-Molecule Porphyrin by Gold Nanoparticle-Based SELEX

  • Original Article
  • Published:
Journal of Molecular Evolution Aims and scope Submit manuscript

Abstract

In this study, a new strategy for the selection of aptamers against small-molecule target was established using gold nanoparticles (AuNPs) as the separation matrix and Zinc(II)-Protoporphyrin IX (ZnPPIX) as the target molecule without the immobilization step due to the absorption of ssDNA on AuNPs. The progress of the selection process was monitored by the recovery rate and the fluorescence enhancement of N-methyl mesoporphyrin IX (NMM) after reacting with each selected pool. After 11 rounds of selection, a truncated aptamer ZnP1.2 with a low-micromolar dissociation constant was obtained, and it also showed good fluorescence enhancement for NMM and the enhanced peroxidase activity after binding with hemin, indicating this functional aptamer has potential to be a light-up fluorescent probe and a DNAzyme which could be used as an alternative to peroxidases for many colorimetric or chemiluminescent detections in biosensing events. The experimental results show that the simple and convenient AuNP-based SELEX is very conducive to the selection of aptamers for small-molecule targets.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  • Blind M, Blank M (2015) Aptamer selection technology and recent advances. Mol Ther-Nucl Acids 4:e223

    Article  Google Scholar 

  • Bugaut A, Balasubramanian S (2008) A sequence-independent study of the influence of short loop lengths on the stability and topology of intramolecular DNA G-quadruplexes. Biochemistry 47:689–697

    Article  CAS  PubMed  Google Scholar 

  • Ellington AD, Szostak JW (1990) In vitro selection of RNA molecules that bind specific ligands. Nature 346:818–822

    Article  CAS  PubMed  Google Scholar 

  • Famulok M, Mayer G (2014) Aptamers and SELEX in chemistry & biology. Chem Biol 21:1055–1058

    Article  CAS  PubMed  Google Scholar 

  • Famulok M, Mayer G, Blind M (2000) Nucleic acid aptamers from selection in vitro to applications in vivo. Acc Chem Res 33:591–599

    Article  CAS  PubMed  Google Scholar 

  • Frens G (1973) Controlled nucleation for the regulation of the particle size in monodisperse gold suspensions. Nat Phys Sci 241:20

    Article  CAS  Google Scholar 

  • Gu H, Duan N, Wu S, Hao L, Xia Y, Ma X, Wang Z (2016) Graphene oxide-assisted non-immobilized SELEX of okdaic acid aptamer and the analytical application of aptasensor. Sci Rep 6:21665

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hollenstein M (2015) DNA catalysis: the chemical repertoire of DNAzymes. Molecules 20:20777–20804

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kong DM, Wu J, Ma YE, Shen HX (2008) A new method for the study of G-quadruplex ligands. Analyst 133:1158–1160

    Article  CAS  PubMed  Google Scholar 

  • Labbé RF, Vreman HJ, Stevenson DK (1999) Zinc protoporphyrin: a metabolite with a mission. Clin Chem 45:2060–2072

    PubMed  Google Scholar 

  • Li H, Rothberg L (2004a) Colorimetric detection of DNA sequences based on electrostatic interactions with unmodified gold nanoparticles. Proc Natl Acad Sci USA 101:14036–14039

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Li H, Rothberg L (2004b) Label-free colorimetric detection of specific sequences in genomic DNA amplified by the polymerase chain reaction. J Am Chem Soc 126:10958–10961

    Article  CAS  PubMed  Google Scholar 

  • Li Y, Geyer R, Sen D (1996) Recognition of anionic porphyrins by DNA aptamers. Biochemistry 35:6911–6922

    Article  CAS  PubMed  Google Scholar 

  • Li T, Li B, Dong S (2007) Aptamer-based label-free method for hemin recognition and DNA assay by capillary electrophoresis with chemiluminescence detection. Anal Bioanal Chem 389(3):887–893

    Article  CAS  PubMed  Google Scholar 

  • Liu J (2012) Adsorption of DNA onto gold nanoparticles and graphene oxide: surface science and applications. Phys Chem Chem Phys 14:10485–10496

    Article  CAS  PubMed  Google Scholar 

  • Liu J, Bai W, Niu S, Zhu C, Yang S, Chen A (2014) Highly sensitive colorimetric detection of 17β-estradiol using split DNA aptamers immobilized on unmodified gold nanoparticles. Sci Rep 4:7571

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Liu S, Xu N, Tan C, Fang W, Tan Y, Jiang Y (2018) A sensitive colorimetric aptasensor based on trivalent peroxidase-mimic DNAzyme and magnetic nanoparticles. Anal Chim Acta 1018:86–93

    Article  CAS  PubMed  Google Scholar 

  • McKeague M, DeRosa MC (2012) Challenges and opportunities for small molecule aptamer development. J Nucl Acids 2012:748913

    Article  CAS  Google Scholar 

  • McKeague M, McConnell EM, Cruz-Toledo J, Bernard ED, Pach A, Mastronardi E, Cabecinha A (2015) Analysis of in vitro aptamer selection parameters. J Mol Evol 81:150–161

    Article  CAS  PubMed  Google Scholar 

  • Nguyen VT, Kwon YS, Kim JH, Gu MB (2014) Multiple GO-SELEX for efficient screening of flexible aptamers. Chem Commun 50:10513–10516

    Article  CAS  Google Scholar 

  • Pavlov V, Xiao Y, Gill R, Dishon A, Kotler M, Willner I (2004) Amplified chemiluminescence surface detection of DNA and telomerase activity using catalytic nucleic acid labels. Anal Chem 76:2152–2156

    Article  CAS  PubMed  Google Scholar 

  • Peng Y, Li L, Mu X, Guo L (2013) Aptamer-gold nanoparticle-based colorimetric assay for the sensitive detection of thrombin. Sens Actuators B 177:818–825

    Article  CAS  Google Scholar 

  • Ruscito A, DeRosa MC (2016) Small-molecule binding aptamers: selection strategies, characterization, and applications. Front Chem 4:14

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Stoltenburg R, Nikolaus N, Strehlitz B (2012) Capture-SELEX: selection of DNA aptamers for aminoglycoside antibiotics. J Anal Methods Chem 2012:415697

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Toh SY, Citartan M, Gopinath SC, Tang TH (2015) Aptamers as a replacement for antibodies in enzyme-linked immunosorbent assay. Biosens Bioelectron 64:392–403

    Article  CAS  PubMed  Google Scholar 

  • Travascio P, Li Y, Sen D (1998) DNA-enhanced peroxidase activity of a DNA aptamer-hemin complex. Chem Biol 5:505–517

    Article  CAS  PubMed  Google Scholar 

  • Tuerk C, Gold L (1990) Systematic evolution of ligands by exponential enrichment: RNA ligands to bacteriophage T4 DNA polymerase. Science 249:505–510

    Article  CAS  PubMed  Google Scholar 

  • Turkevich J, Stevenson PC, Hillier J (1951) A study of the nucleation and growth processes in the synthesis of colloidal gold. Discuss Faraday Soc 11:55–75

    Article  Google Scholar 

  • Wang Y, Rando RR (1995) Specific binding of aminoglycoside antibiotics to RNA. Chem Biol 2:281–290

    Article  CAS  PubMed  Google Scholar 

  • Wang H, Cheng H, Wang J, Xu L, Chen H, Pei R (2016) Selection and characterization of DNA aptamers for the development of light-up biosensor to detect Cd (II). Talanta 154:498–503

    Article  CAS  PubMed  Google Scholar 

  • WooáKim D, BockáGu M (2012) Immobilization-free screening of aptamers assisted by graphene oxide. Chem Commun 48:2071–2073

    Article  Google Scholar 

  • Yang C, Wang Y, Marty JL, Yang X (2011) Aptamer-based colorimetric biosensing of Ochratoxin A using unmodified gold nanoparticles indicator. Biosens Bioelectron 26:2724–2727

    Article  CAS  PubMed  Google Scholar 

  • Yang L, Ding P, Luo Y, Wang J, Lv H, Li W, Pei R (2019) Exploration of catalytic nucleic acids on porphyrin metalation and peroxidase activity by in vitro selection of aptamers for N-methyl mesoporphyrin IX. ACS Comb Sci 21:83–89

    Article  CAS  PubMed  Google Scholar 

  • Zhang X, Servos MR, Liu J (2012) Surface science of DNA adsorption onto citrate-capped gold nanoparticles. Langmuir 28:3896–3902

    Article  CAS  PubMed  Google Scholar 

  • Zuker M (2003) M-fold web server for nucleic acid folding and hybridization prediction. Nucleic Acids Res 31:3406–3415

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

This work was financially supported by the Natural Science Foundation of China (21575154, 21775160, 81801837, 31800685), and the Science Foundation of Jiangsu Province (BE2016680, BE2018665, BK20180250, BK20180258, BK20180261).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Jine Wang or Renjun Pei.

Additional information

Handling Editor: Michelle Meyer.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 422 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Li, W., Luo, Y., Gao, T. et al. In Vitro Selection of DNA Aptamers for a Small-Molecule Porphyrin by Gold Nanoparticle-Based SELEX. J Mol Evol 87, 231–239 (2019). https://doi.org/10.1007/s00239-019-09905-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00239-019-09905-4

Keywords

Navigation