1932

Abstract

Abstract

Each day tens of thousands of DNA single-strand breaks (SSBs) arise in every cell from the attack of deoxyribose and DNA bases by reactive oxygen species and other electrophilic molecules. DNA double-strand breaks (DSBs) also arise, albeit at a much lower frequency, from similar attacks and from the encounter of unrepaired SSBs and possibly other DNA structures by DNA replication forks. DSBs are also created during normal development of the immune system. Defects in the cellular response to DNA strand breaks underpin many human diseases, including disorders associated with cancer predisposition, immune dysfunction, radiosensitivity, and neurodegeneration. Here we provide an overview of the genetic diseases associated with defects in the repair/response to DNA strand breaks.

Loading

Article metrics loading...

/content/journals/10.1146/annurev.genom.7.080505.115648
2007-09-22
2024-04-25
Loading full text...

Full text loading...

/content/journals/10.1146/annurev.genom.7.080505.115648
Loading
  • Article Type: Review Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error