Skip to main content

Advertisement

Log in

SPECT/CT imaging of apoptosis in aortic aneurysm with radiolabeled duramycin

  • Published:
Apoptosis Aims and scope Submit manuscript

A Correction to this article was published on 17 August 2019

This article has been updated

Abstract

The objective of this research was to estimate whether a [99mTc]duramycin probe can be used for apoptosis imaging in patients with aortic aneurysm (AA). Vascular smooth muscle cell (SMC) apoptosis has an important influence on AA development. Thus, non-invasive imaging of SMC apoptosis may be able to evaluate AA progress and risk stratification. SMCs were treated with hydrogen peroxide (H2O2; 200 μΜ) or culture medium as a control. Apoptosis was measured using flow cytometry and [99mTc]duramycin to detect the binding efficiency to apoptotic SMCs. C57/BL6 mice were administered angiotensin-II and beta-aminopropionitrile (BAPN) subcutaneously to establish an AA model, or saline for controls. Aortic specimens underwent pathological evaluation and their aortic diameters were measured after 6 weeks. Micro-SPECT/CT scanning of [99mTc]duramycin and 18F-FDG PET detection were performed. SMCs treated with H2O2 showed more apoptosis compared with the control group (67.2 ± 3.8% vs. 16.1 ± 0.6%, P < 0.01). The experimental group showed a high rate of AA formation (70%) compared with no AA formation in the control group. The average aorta diameter was higher and [99mTc]duramycin uptake at the AA site was higher in the experimental group compared with the control group. Compared with the normal aorta in the control group, AA in experiment group had more severe medial degeneration, elastic fiber reduction and fracture, and collagen degeneration. TUNEL staining verified the higher apoptosis rate at the AA site in experiment group compared with the control group (63.9 ± 3.7% in ascending AA, 66.4 ± 4.0% in thoracic AA, vs. 3.5 ± 0.3% in normal aorta, P < 0.01). [99mTc]Duramycin may be an effective probe to evaluate apoptosis in AA.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

Change history

  • 17 August 2019

    The original version of this article unfortunately contains errors in Figure 4. An incorrect Figure 4D is published which is actually a repetition of Figure 2C (i.e., apoptosis rate in control vs. H2O2-treated group). The correct Figure 4D should be the aortic diameter of control vs. experimental groups. Also, the order of part figures (a\b\c\d) in Figure 4E is incorrect. The correct Figure 4 is given below.

References

  1. Clouse WD, Hallett JW Jr, Schaff HV, Gayari MM, Ilstrup DM, Melton LJ 3rd (1998) Improved prognosis of thoracic aortic aneurysms: a population-based study. JAMA 280(22):1926–1929. https://doi.org/10.1001/jama.280.22.1926

    Article  CAS  PubMed  Google Scholar 

  2. Ramanath VS, Oh JK, Sundt TM 3rd, Eagle KA (2009) Acute aortic syndromes and thoracic aortic aneurysm. Mayo Clin Proc 84(5):465–481. https://doi.org/10.1016/S0025-6196(11)60566-1

    Article  PubMed  PubMed Central  Google Scholar 

  3. Clouse WD, Hallett JW Jr, Schaff HV, Spittell PC, Rowland CM, Ilstrup DM, Melton LJ 3rd (2004) Acute aortic dissection: population-based incidence compared with degenerative aortic aneurysm rupture. Mayo Clin Proc 79(2):176–180. https://doi.org/10.4065/79.2.176

    Article  PubMed  Google Scholar 

  4. Johnston KW, Rutherford RB, Tilson MD, Shah DM, Hollier L, Stanley JC (1991) Suggested standards for reporting on arterial aneurysms. Subcommittee on reporting standards for arterial aneurysms, Ad Hoc Committee on reporting standards, society for vascular surgery and North American chapter, International society for cardiovascular surgery. J Vasc Surg 13(3):452–458. https://doi.org/10.1067/mva.1991.26737

    Article  CAS  PubMed  Google Scholar 

  5. Brown LC, Powell JT, UK Small Aneurysm Trial Participants (1999) Risk factors for aneurysm rupture in patients kept under ultrasound surveillance. Ann Surg 230(3):289–296 (discussion 296–287)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Akai A, Watanabe Y, Hoshina K, Obitsu Y, Deguchi J, Sato O, Shigematsu K, Miyata T (2015) Family history of aortic aneurysm is an independent risk factor for more rapid growth of small abdominal aortic aneurysms in Japan. J Vasc Surg 61(2):287–290. https://doi.org/10.1016/j.jvs.2014.07.007

    Article  PubMed  Google Scholar 

  7. Baxter BT, Davis VA, Minion DJ, Wang YP, Lynch TG, McManus BM (1994) Abdominal aortic aneurysms are associated with altered matrix proteins of the nonaneurysmal aortic segments. J Vasc Surg 19(5):797–802 (discussion 803)

    Article  CAS  PubMed  Google Scholar 

  8. Brophy CM, Reilly JM, Smith GJ, Tilson MD (1991) The role of inflammation in nonspecific abdominal aortic aneurysm disease. Ann Vasc Surg 5(3):229–233. https://doi.org/10.1007/BF02329378

    Article  CAS  PubMed  Google Scholar 

  9. Kuivaniemi H, Ryer EJ, Elmore JR, Tromp G (2015) Understanding the pathogenesis of abdominal aortic aneurysms. Expert Rev Cardiovasc Ther 13(9):975–987. https://doi.org/10.1586/14779072.2015.1074861

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Shimizu K, Mitchell RN, Libby P (2006) Inflammation and cellular immune responses in abdominal aortic aneurysms. Arterioscler Thromb Vasc Biol 26(5):987–994. https://doi.org/10.1161/01.ATV.0000214999.12921.4f

    Article  CAS  PubMed  Google Scholar 

  11. Hu C, Zhu K, Li J, Wang C, Lai L (2017) Molecular targets in aortic aneurysm for establishing novel management paradigms. J Thorac Dis 9(11):4708–4722. https://doi.org/10.21037/jtd.2017.10.63

    Article  PubMed  PubMed Central  Google Scholar 

  12. Li DY, Busch A, Jin H, Chernogubova E, Pelisek J, Karlsson J, Sennblad B, Liu S, Lao S, Hofmann P, Backlund A, Eken SM, Roy J, Eriksson P, Dacken B, Ramanujam D, Dueck A, Engelhardt S, Boon RA, Eckstein HH, Spin JM, Tsao PS, Maegdefessel L (2018) H19 induces abdominal aortic aneurysm development and progression. Circulation 138(15):1551–1568. https://doi.org/10.1161/CIRCULATIONAHA.117.032184

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Zhao M, Li Z, Bugenhagen S (2008) 99 mTc-labeled duramycin as a novel phosphatidylethanolamine-binding molecular probe. J Nucl Med 49(8):1345–1352. https://doi.org/10.2967/jnumed.107.048603

    Article  CAS  PubMed  Google Scholar 

  14. Elvas F, Vangestel C, Rapic S, Verhaeghe J, Gray B, Pak K, Stroobants S, Staelens S, Wyffels L (2015) Characterization of [(99m)Tc]duramycin as a SPECT imaging agent for early assessment of tumor apoptosis. Mol Imaging Biol 17(6):838–847. https://doi.org/10.1007/s11307-015-0852-6

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Audi S, Li Z, Capacete J, Liu Y, Fang W, Shu LG, Zhao M (2012) Understanding the in vivo uptake kinetics of a phosphatidylethanolamine-binding agent (99m)Tc-Duramycin. Nucl Med Biol 39(6):821–825. https://doi.org/10.1016/j.nucmedbio.2012.02.004

    Article  CAS  PubMed  Google Scholar 

  16. Zhang Y, Stevenson GD, Barber C, Furenlid LR, Barrett HH, Woolfenden JM, Zhao M, Liu Z (2013) Imaging of rat cerebral ischemia-reperfusion injury using(99m)Tc-labeled duramycin. Nucl Med Biol 40(1):80–88. https://doi.org/10.1016/j.nucmedbio.2012.09.004

    Article  CAS  PubMed  Google Scholar 

  17. Liu Z, Larsen BT, Lerman LO, Gray BD, Barber C, Hedayat AF, Zhao M, Furenlid LR, Pak KY, Woolfenden JM (2016) Detection of atherosclerotic plaques in ApoE-deficient mice using (99m)Tc-duramycin. Nucl Med Biol 43(8):496–505. https://doi.org/10.1016/j.nucmedbio.2016.05.007

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Gletsu N, Doan TN, Cole J, Sutliff RL, Bernstein KE (2005) Angiotensin II-induced hypertension in mice caused an increase in insulin secretion. Vasc Pharmacol 42(3):83–92. https://doi.org/10.1016/j.vph.2005.01.006

    Article  CAS  Google Scholar 

  19. Kumar D, Trent MB, Boor PJ (1998) Allylamine and beta-aminopropionitrile induced aortic medial necrosis: mechanisms of synergism. Toxicology 125(2–3):107–115. https://doi.org/10.1016/S0300-483X(97)00168-6

    Article  CAS  PubMed  Google Scholar 

  20. Behmoaras J, Slove S, Seve S, Vranckx R, Sommer P, Jacob MP (2008) Differential expression of lysyl oxidases LOXL1 and LOX during growth and aging suggests specific roles in elastin and collagen fiber remodeling in rat aorta. Rejuvenation Res 11(5):883–889. https://doi.org/10.1089/rej.2008.0760

    Article  CAS  PubMed  Google Scholar 

  21. Zhang SH, Reddick RL, Piedrahita JA, Maeda N (1992) Spontaneous hypercholesterolemia and arterial lesions in mice lacking apolipoprotein E. Science 258(5081):468–471. https://doi.org/10.1126/science.1411543

    Article  CAS  PubMed  Google Scholar 

  22. Ishibashi S, Goldstein JL, Brown MS, Herz J, Burns DK (1994) Massive xanthomatosis and atherosclerosis in cholesterol-fed low density lipoprotein receptor-negative mice. J Clin Investig 93(5):1885–1893. https://doi.org/10.1172/JCI117179

    Article  CAS  PubMed  Google Scholar 

  23. Anidjar S, Salzmann JL, Gentric D, Lagneau P, Camilleri JP, Michel JB (1990) Elastase-induced experimental aneurysms in rats. Circulation 82(3):973–981. https://doi.org/10.1161/01.CIR.82.3.973

    Article  CAS  PubMed  Google Scholar 

  24. Freestone T, Turner RJ, Higman DJ, Lever MJ, Powell JT (1997) Influence of hypercholesterolemia and adventitial inflammation on the development of aortic aneurysm in rabbits. Arterioscler Thromb Vasc Biol 17(1):10–17. https://doi.org/10.1161/01.ATV.17.1.10

    Article  CAS  PubMed  Google Scholar 

  25. Daugherty A, Manning MW, Cassis LA (2000) Angiotensin II promotes atherosclerotic lesions and aneurysms in apolipoprotein E-deficient mice. J Clin Investig 105(11):1605–1612. https://doi.org/10.1172/JCI7818

    Article  CAS  PubMed  Google Scholar 

  26. Zhao M (2011) Lantibiotics as probes for phosphatidylethanolamine. Amino Acids 41(5):1071–1079. https://doi.org/10.1007/s00726-009-0386-9

    Article  CAS  PubMed  Google Scholar 

  27. Johnson SE, Li Z, Liu Y, Moulder JE, Zhao M (2013) Whole-body imaging of high-dose ionizing irradiation-induced tissue injuries using 99mTc-duramycin. J Nucl Med 54(8):1397–1403. https://doi.org/10.2967/jnumed.112.112490

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Yamanouchi D, Morgan S, Stair C, Seedial S, Lengfeld J, Kent KC, Liu B (2012) Accelerated aneurysmal dilation associated with apoptosis and inflammation in a newly developed calcium phosphate rodent abdominal aortic aneurysm model. J Vasc Surg 56(2):455–461. https://doi.org/10.1016/j.jvs.2012.01.038

    Article  PubMed  PubMed Central  Google Scholar 

  29. Ailawadi G, Moehle CW, Pei H, Walton SP, Yang Z, Kron IL, Lau CL, Owens GK (2009) Smooth muscle phenotypic modulation is an early event in aortic aneurysms. J Thorac Cardiovasc Surg 138(6):1392–1399. https://doi.org/10.1016/j.jtcvs.2009.07.075

    Article  PubMed  PubMed Central  Google Scholar 

  30. Kotze CW, Menezes LJ, Endozo R, Groves AM, Ell PJ, Yusuf SW (2009) Increased metabolic activity in abdominal aortic aneurysm detected by 18F-fluorodeoxyglucose (18F-FDG) positron emission tomography/computed tomography (PET/CT). Eur J Vasc Endovasc Surg 38(1):93–99. https://doi.org/10.1016/j.ejvs.2008.12.016

    Article  CAS  PubMed  Google Scholar 

  31. Truijers M, Kurvers HA, Bredie SJ, Oyen WJ, Blankensteijn JD (2008) In vivo imaging of abdominal aortic aneurysms: increased FDG uptake suggests inflammation in the aneurysm wall. J Endovasc Ther 15(4):462–467. https://doi.org/10.1583/08-2447.1

    Article  PubMed  Google Scholar 

  32. Sakalihasan N, Van Damme H, Gomez P, Rigo P, Lapiere CM, Nusgens B, Limet R (2002) Positron emission tomography (PET) evaluation of abdominal aortic aneurysm (AAA). Eur J Vasc Endovasc Surg 23(5):431–436. https://doi.org/10.1053/ejvs.2002.1646

    Article  CAS  PubMed  Google Scholar 

  33. Turner GH, Olzinski AR, Bernard RE, Aravindhan K, Boyle RJ, Newman MJ, Gardner SD, Willette RN, Gough PJ, Jucker BM (2009) Assessment of macrophage infiltration in a murine model of abdominal aortic aneurysm. J Magn Reson Imaging 30(2):455–460. https://doi.org/10.1002/jmri.21843

    Article  PubMed  Google Scholar 

  34. Klink A, Heynens J, Herranz B, Lobatto ME, Arias T, Sanders HM, Strijkers GJ, Merkx M, Nicolay K, Fuster V, Tedgui A, Mallat Z, Mulder WJ, Fayad ZA (2011) In vivo characterization of a new abdominal aortic aneurysm mouse model with conventional and molecular magnetic resonance imaging. J Am Coll Cardiol 58(24):2522–2530. https://doi.org/10.1016/j.jacc.2011.09.017

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

The authors acknowledge the funding from National Natural Science Foundation of China (Grant No. 81771971), Shanghai Pujiang Program (Grant No. 17PJ1401500), Shanghai Municipal Health Commission (Grant No. 201640134), and the “Chen Guang” Project Supported by Shanghai Municipal Education Commission and Shanghai Education Development Foundation (Grant No. 14CG06).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Dengfeng Cheng, Kai Zhu or Hao Lai.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hu, C., Tan, H., Lin, Q. et al. SPECT/CT imaging of apoptosis in aortic aneurysm with radiolabeled duramycin. Apoptosis 24, 745–755 (2019). https://doi.org/10.1007/s10495-019-01554-8

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10495-019-01554-8

Keywords

Navigation