Skip to main content
Log in

Characterization of a stamen-specific cDNA encoding a novel plant defensin in Chinese cabbage

  • Published:
Plant Molecular Biology Aims and scope Submit manuscript

Abstract

We isolated a stamen-specific cDNA, BSD1 (Brassica stamen specific plant defensin 1) that encodes a novel plant defensin peptide in Chinese cabbage (Brassica campestris L. ssp. pekinensis). Plant defensins are antimicrobial peptides containing eight highly conserved cysteine residues linked by disulfide bridges. In BSD1, the eight cysteine residues and a glutamate residue at position 29 are conserved whereas other amino acid residues of the plant defensins consensus sequence are substituted. BSD1 transcripts accumulate specifically in the stamen of developing flowers and its level drops as the flowers mature. The recombinant BSD1 produced in Escherichia coli showed antifungal activity against several phytopathogenic fungi. Furthermore, constitutive over-expression of the BSD1 gene under the control of the cauliflower mosaic virus (CaMV) 35S promoter conferred enhanced tolerance against the Phytophthora parasitica in the transgenic tobacco plants.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  • An, G., Ebert, P.R., Mitra, A. and Ha, S.B. 1988. Binary vectors. In: S.B. Gelvin, R.A. Schilperoort and D.P.S. Verma (Eds) Plant Molecular Biology Manual, Kluwer Academic Publishers, Dordrecht, Netherlands, pp. A3/1–A3/19.

    Google Scholar 

  • Bloch, C. and Richardson, M. 1991. A new family of small (5 kDa) protein inhibitors of insect ?-amylases from seeds of sorghum (Sorghum bicolor (L.) Moench) have sequence homologies with wheat ?-purothionins. FEBS Lett. 279: 101–104.

    Google Scholar 

  • Bohlmann, H. 1994. The role of thionins in plant protection. Crit. Rev. Plant Sci. 13: 1–6.

    Google Scholar 

  • Bohlmann, H. and Apel, K. 1991. Thionins. Annu. Rev. Plant Physiol. Plant Mol. Biol. 42: 227–240.

    Google Scholar 

  • Broekaert, W.F., Terras, F.R.G., Cammue, B.P.A. and Osborn, R.W. 1995. Plant defensins: novel antimicrobial peptides as components of the host defense system. Plant Physiol. 108: 1353–1358.

    Google Scholar 

  • Broekaert, W.F., Cammue, B.P.A., De Bolle, M.F.C., Thevissen, K., De Samblanx, G.W. and Osborn, R.W. 1997. Antimicrobial peptides from plants. Crit. Rev. Plant Sci. 16: 297–323.

    Google Scholar 

  • Cammue, B.P.A., De Bolle, M.F., Terras, F.R.G., Proost, P., Van Damme, J., Rees, S.B., Vanderleyden, J. and Broekaert, W.F. 1992. Isolation and characterization of a novel class of plant antimicrobial peptides form Mirabilis jalapa L. seeds. J. Biol. Chem. 267: 2228–2233.

    Google Scholar 

  • Chiang, C.C. and Hadwiger, L.A. 1991. The Fusarium solaniinduced expression of a pea gene family encoding high cysteine content proteins. Mol. Plant-Microbe. Interact. 4: 324–331.

    Google Scholar 

  • Colilla, F.J., Rocher, A. and Mendez, E. 1990. ?-purothionins: amino acid sequence of two polypeptides of a new family of thionins from wheat endosperm. FEBS Lett. 270: 191–194.

    Google Scholar 

  • De Samblanx, G.W., Fernandez, A., Sijtsma, L., Plasman, H.H., Schaaper, W.M.M., Posthuma, G.A., Fant, F., Meloen, R.H., Broekaert, W.F. and van Amerongen, A. 1996. Antifungal activity of synthetic 15-mer peptides based on the Rs-AFP2 (Raphanus sativus antifungal protein 2) sequence. Peptide Res. 9: 262–268.

    Google Scholar 

  • De Samblanx, G.W., Goderis, I.J., Thevissen, K., Raemaekers, R., Fant, F., Borremans, F., Acland, D., Osborn, R.W., Patel, S. and Broekaert, W.F. 1997. Mutational analysis of a plant defensin from radish (Raphanus sativus L.) reveals two adjacent sites important for antifungal activity. J. Biol. Chem. 272: 1171–1179.

    Google Scholar 

  • Dellaporta, S., Wood, J. and Hicks, J. 1983. A plant DNA miniprep. Plant Mol. Biol. Rep. 1: 19–21.

    Google Scholar 

  • Dixon, R.A. 1986. The phytoalexin response: elicitation, signaling and control of host gene expression. Biol. Rev. 61: 239–291.

    Google Scholar 

  • Duvick, J.P., Rood, T., Rao, A.G. and Marshak, D.R. 1992. Purifi-cation and characterization of a novel antimicrobial peptide from maize (Zea mays L.) kernels. J. Biol. Chem. 267: 18814–18820.

    Google Scholar 

  • Epple, P., Apel, K. and Bohlmann, H. 1997. ESTs reveal a multigene family for plant defensins in Arabidopsis thaliana. FEBS Lett. 400: 168–172.

    Google Scholar 

  • Gao, A.-G., Hakimi, S. M., Mittanck, C. A., Wu, Y., Woerner, B. M., Stark, D. M., Shah, D. M., Liang, J. and Rommens, C. M. T. 2000. Fungal pathogen protection in potato by expression of a plant defensin peptide. Nature Biotechnol. 18: 1307–1310.

    Google Scholar 

  • Garcia-Olmedo, F., Molina, A., Segura, A. and Moreno, M. 1995. The defensive role of nonspecific lipid-transfer proteins in plants. Trends Microbiol. 3: 72–74.

    Google Scholar 

  • Garcia-Olmedo, F., Molina, A., Alamillo, J. M. and Rodriguez-Palenzuela, P. 1998. Plant defense peptides. Biopolymers 47: 479–491.

    Google Scholar 

  • Gu, Q., Kawarta, E.F., Morse, M-J., Wu, H-M. and Cheung, A.Y. 1992. A flower-specific cDNA encoding a novel thionin in tobacco. Mol. Gen. Genet. 234: 89–96.

    Google Scholar 

  • Harrison, S.J., Marcus, J.P., Goulter, K.C., Green, J.L., Maclean, D.J. and Manners, J.M. 1997. An antimicrobial peptide from the Australian native Hardenbergia violacea provides the first functionally characterized member of a subfamily of plant defensins. Aust. J. Plant Physiol. 24: 571–578.

    Google Scholar 

  • Heo, W.D., Lee, S.H., Kim, M.C., Kim, J.C., Chung, W.S., Chun, H.J., Lee, K.J., Park, C.Y., Park, H.C., Choi, J.Y. and Cho, M.J. 1999. Involvement of specific calmodulin isoforms in salicylic acid-independent activation of plant disease resistance responses. Proc. Natl. Acad. Sci. USA 96: 766–771.

    Google Scholar 

  • Hoffmann, J.A. and Hetru, C. 1992. Insect defensins: inducible antibacterial peptides. Immunol. Today 13: 411–415.

    Google Scholar 

  • Hood, M.E. and Shew, H.D. 1996. Applications of KOH-aniline blue fluorescence in the study of plant-fungal interactions. Phytophathology 86: 704–708.

    Google Scholar 

  • Horsch, R.B., Fry, J.E., Hoffmann, N.L., Eichhoitz, D., Rogers, S.G. and Fraley, R.T. 1985. A simple and general method for transferring genes into plants. Science 227: 1229–1231.

    Google Scholar 

  • Hu, X. and Reddy, A.S.N. 1997. Cloning and expression of a PR5-like protein from Arabidopsis: inhibition of fungal growth by bacterially expressed protein. Plant Mol. Biol. 34: 949–959.

    Google Scholar 

  • Karunanandaa, B., Singh, A. and Kao, T-h. 1994. Characterization of a predominantly pistil-expressed gene encoding a ?-thioninlike protein of Petunia inflata. Plant Mol. Biol. 26: 459–464.

    Google Scholar 

  • Koo, J.C., Lee, S.Y., Chun, H.J., Cheong, Y.H., Choi, J.S., Kawabata, S.I., Miyagi, M., Tsunasawa, S., Ha, K.S., Bae, D.W., Han, C-D., Lee, B.L. and Cho, M.J. 1998. Two hevein homologs isolated from the seed of Pharbitis nil L. exhibit potent antifungal activity. Biochim. Biophys. Acta 1382: 80–90.

    Google Scholar 

  • Kragh, K.M., Nielsen, J.E., Nielsen, K.K., Dreboldt, S. and Mikkelsen, J.D. 1995. Mol. Plant-Microbe Interact. 8: 424–434.

    Google Scholar 

  • Lee, S.H., Kim, J.C., Lee, M.S., Heo, W.D., Seo, H.Y., Yoon, H.W., Hong, J.C., Lee, S.Y., Bahk, J.D., Hwang, I. and Cho, M.J. 1995. Identification of a novel divergent calmodulin isoform from soybean which has a different ability to activate calmodulindependent enzymes. J. Biol. Chem. 270: 21806–21812.

    Google Scholar 

  • Lehrer, R.I., Lichtenstein, A.K. and Ganz, T. 1993. Defensins: antimicrobial and cytotoxic peptides of mammalian cells. Annu. Rev. Immunol. 11: 105–128.

    Google Scholar 

  • Lim, C.O., Kim, H.Y., Kim, M.G., Lee, S.I., Chung, W.S., Park, S.H., Hwang, I. and Cho, M.J. 1996. Expressed sequence tags of Chinese cabbage flower bud cDNA. Plant Physiol. 111: 577–588.

    Google Scholar 

  • Linthorst, H.J.M. 1991. Pathogenesis-related proteins of plants. Crit. Rev. Plant Sci. 10: 123–150.

    Google Scholar 

  • Mendez, E., Moreno, A., Collila, F., Pelaez, F., Limas, G.G., Mendez, R., Soriano, F., Salinas, M. and DeHaro, C. 1990. Primary structure and inhibition of protein synthesis in eukaryotic cell-free system of a novel thionin, ?-hordothionin, from barley endosperm. Eur. J. Biochem. 194: 533–539.

    Google Scholar 

  • Meyer, B., Houlné, G., Pozueta-Romero, J., Schantz, M.-L. and Schantz, R. 1996. Fruit-specific expression of a defensin-type gene family in bell pepper. Plant Physiol. 112: 615–622.

    Google Scholar 

  • Moreno, M., Segura, A. and Garcia-Olmedo, F. 1994. Pseudothionin, a potato peptide active against potato pathogens. Eur. J. Biochem. 223: 135–139.

    Google Scholar 

  • Nielsen, K.K., Nielsen, J.E., Madrid, S.M. and Mikkelsen, J.D. 1997. Characterization of a new antifungal chitin-binding peptide from sugar beet leaves. Plant Physiol. 113: 83–91.

    Google Scholar 

  • Nitti, G., Orru, S., Bloch, C. Jr, Morhy, L., Marino, G. and Pucci, P. 1995. Amino acid sequence and disulphide-bridge pattern of three gamma-thionins from Sorghum bicolor. Eur. J. Biochem. 228: 250–256.

    Google Scholar 

  • Oh, B.J., Moon, K.K., Kostenyuk, I., Shin, B.C. and Kim, K.S. 1999. Coexpression of a defensin gene and a thionin-like gene via different signal transduction pathways in pepper and Colletotrichum gloeosporioides interactions. Plant Mol. Biol. 41: 313–319.

    Google Scholar 

  • Osborn, R.W., De Samblanx, G.W., Thevissen, K., Goderis, I., Torrekens, S., Van Leuven, F., Attenborough, S., Rees, S.B. and Broekaert, W.F. 1995. Isolation and characterization of plant defensins from seeds of Asteraceae, Fabaceae, Hippocastanaceae and Saxifragaceae. FEBS Lett. 368: 257–262.

    Google Scholar 

  • Patel, S.U., Osborn, R., Rees, S. and Thornton, J.M. 1998. Structural studies of Impatiens balsamina antimicrobial protein (Ib-AMP1). Biochemistry 37: 983–990.

    Google Scholar 

  • Sambrook, J., Fritsch, E.F. and Maniatis, T.A. 1989. Molecular Cloning: A laboratory Manual, 2nd ed. Cold Spring Harbor Laboratory Press, Cold Spring Harbor, NY.

    Google Scholar 

  • Sanger, F., Nicklen, S. and Coulson, A.R. 1977. DNA sequencing with chain-terminating inhibitors. Proc. Natl. Acad. Sci. USA 74: 5463–5467.

    Google Scholar 

  • Segura, A., Moreno, M., Madueno, F., Molina, A. and Garcia-Olmedo, F. 1999. Snakin-1, a peptide from potato that is active against plant pathogens. Mol. Plant-Microbe Interact. 12: 16–23.

    Google Scholar 

  • Tailor, R.H., Acland, D.P., Attenborough, S., Cammue, B.P.A., Evans, I.J., Osborn, R.W., Ray, J.A., Rees, S.B. and Broekaert, W.F. 1997. A novel family of small cysteine-rich antimicrobial peptides from seed of Impatiens balsamina is derived from a single precursor protein. J. Biol. Chem. 272: 24480–24487.

    Google Scholar 

  • Terras, F.R.G., Eggermont, K., Kovaleva, V., Raikhel, N.V., Osborn, R.W., Kester, A., Rees, S.B., Torrekens, S., Van Leuven, F., Vanderleyden, J., Cammue, B.P.A. and Broekaert, W.F. 1995. Small cysteine-rich antifungal proteins from radish: their role in host defense. Plant Cell 7: 573–588.

    Google Scholar 

  • Terras, F.R.G., Schoofs, H.M.E., De Bolle, M.F.C., Van Leuven, F., Rees, S.B., Vanderleyden, J., Cammue, B.P.A. and Broekaert, W.F. 1992. Analysis of two novel classes of plant antifungal proteins from radish (Raphanus sativus L.) seeds. J. Biol. Chem. 267: 15301–15309.

    Google Scholar 

  • Terras, F.R.G., Torrekens, S., Van Leuven, F., Osborn, R.W., Vanderleyden, J., Cammue, B.P.A. and Broekaert, W.F. 1993. A new family of basic cysteine-rich plant antifungal proteins from Brassicaceae species. FEBS Lett. 316: 233–240.

    Google Scholar 

  • van Loon, L.C. and van Kammen, A. 1970. Polyacrylamide disc electrophoresis of soluble leaf proteins from Nicotiana tabacum var. Samson NN. II. Changes in protein composition after infection with TMV. Virology 40: 199–211.

    Google Scholar 

  • von Heijne, G. 1986. A new method for predicting signal sequence cleavage sites. Nucl. Acids Res. 14: 4683–4690.

    Google Scholar 

  • Vorm, O., Roepstorff, P. and Mann, M. 1994. Improved resolution and very high sensitivity in MALDI TOF of matrix surfaces made by fast evaporation. Anal. Chem. 66: 3281–3287.

    Google Scholar 

  • Yun, D.-J., D'Urzo, M.P., Abad, L., Takeda, S., Salzman, R., Chen, Z., Lee, H.S., Hasegawa, P.M. and Bressan, R.A. 1996. Novel osmotically induced antifungal chitinases and bacterial expression of an active recombinant isoform. Plant Physiol. 111: 1219–1225.

    Google Scholar 

  • Yun, D.-J., Bressan, R.A. and Hasegawa, P.M. 1997. Plant antifungal proteins. In: J. Janick (Ed.) Plant Breeding Reviews 14, John Wiley, New York, pp. 39–88.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Moo Je Cho.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Park, H.C., Hwan Kang, Y., Jin Chun, H. et al. Characterization of a stamen-specific cDNA encoding a novel plant defensin in Chinese cabbage. Plant Mol Biol 50, 57–68 (2002). https://doi.org/10.1023/A:1016005231852

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1016005231852

Navigation