Skip to main content
Log in

Analysis of Wild Raspberries (Rubus idaeus L.): Optimization of the Ultrasonic-Assisted Extraction of Phenolics and a New Insight in Phenolics Bioaccessibility

  • Original Paper
  • Published:
Plant Foods for Human Nutrition Aims and scope Submit manuscript

Abstract

A simple and efficient ultrasonic-assisted extraction (UAE) technique was developed in order to find optimal conditions for the extraction of total phenolic compounds, flavonoids and anthocyanins in wild raspberry (Rubus idaeus L.) fruits. Several extraction variables, including methanol composition (v/v, %), solid-solvent ratio (g/mL), time (min) and extraction temperature (°C) were optimized using response surface methodology (RSM). Under optimal conditions for extraction, the total phenolics were found in the concentration of 383 mg GAE/100 g of fresh fruit weight, while HPLC-PDA analysis of the optimized extract showed the presence of cyanidin-3-glucoside, cyanidin-3-sophoroside, catechin, gallic and ellagic acid. The experimental values of DPPH and ABTS radical scavenging activities were 29.0 and 39.5 μmol Trolox/g of fresh fruit weight, respectively. In vitro simulated gastrointestinal digestion showed great raspberry phenolics stability. Our study assessed the bioaccessible phenolics in wild raspberry fruits and showed optimal conditions for the effective extraction of bioactive compounds for their analysis.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

Abbreviations

ABTS:

2,2′-azino-bis(3-ethylbenzothiazoline-6-sulphonic acid)

CCD:

Central composite design

CGE:

Cyanidin-3-glucoside equivalents

DPPH:

2,2-diphenyl-1-picrylhydrazyl

FW:

Fresh weight

GAE:

Gallic acid equivalents

HPLC:

High performance liquid chromatography

PDA:

Photo diode array

Rt :

Retention time

RSM:

Response surface methodology

RUE:

Rutin equivalents

TAC:

Total anthocyanins content

TFC:

Total flavonoids content

TPC:

Total phenolics content

UAE:

Ultrasonic-assisted extraction

UV:

Ultra violet

Vis:

Visible

WRF:

Wild raspberry fruit

References

  1. Dantas AM, Mafaldo IM, Oliveira PM, Lima MDS, Magnani M, Borgess GDSC (2019) Bioaccessibility of phenolic compounds in native and exotic frozen pulps explored in Brazil using a digestion model coupled with a simulated intestinal barrier. Food Chem 274:202–214

    Article  CAS  PubMed  Google Scholar 

  2. Rao AV, Snyder DM (2010) Raspberries and human health: a review. J Agric Food Chem 58:3871–3883

    Article  CAS  PubMed  Google Scholar 

  3. Snyder SM, Low RM, Stocks JC, Eggett DL, Trker TL (2012) Juice, pulp and seeds fractionated from dry climate Primocane raspberry cultivars (Rubus idaeus) have significantly different antioxidant capacity, anthocyanin content and color. Plant Foods Hum Nutr 67:358–364

    Article  CAS  PubMed  Google Scholar 

  4. Rauha JP, Remes S, Heinonen M, Hopia A, Kähkönen M, Kujala T, Pihlaja K, Vuorela H, Vuorela P (2000) Antimicrobial effects of Finnish plant extracts containing flavonoids and other phenolic compounds. Int J Food Microbiol 56:3–12

    Article  CAS  PubMed  Google Scholar 

  5. Baby B, Antony P, Vijayan R (2018) Antioxidant and anticancer properties of berries. Crit Rev Food Sci 58:2491–2507

    Article  CAS  Google Scholar 

  6. Määttä-Riihinen KR, Kamal-Eldin A, Törrönen AR (2014) Identification and quantification of phenolic compounds in berries of Fragaria and Rubus species (family Rosaceae). J Agric Food Chem 52:6178–6187

    Article  CAS  Google Scholar 

  7. Tosun M, Ercisli S, Karlidag H, Sengul M (2009) Characterization of red raspberry (Rubus idaeus L.) genotypes for their phytochemical properties. J Food Sci 74:C575–C579

    Article  CAS  PubMed  Google Scholar 

  8. Zadernowski R, Naczk M, Nesterowicz J (2005) Phenolic acid profiles in some small berries. J Agric Food Chem 53:2118–2124

    Article  CAS  PubMed  Google Scholar 

  9. Tao Y, Wu D, Zhang QA, Sun DW (2014) Ultrasound-assisted extraction of phenolics from wine lees: modeling, optimization and stability of extracts during storage. Ultrason Sonochem 21:706–715

    Article  CAS  PubMed  Google Scholar 

  10. Carrera C, Ruiz-Rodriguez A, Palma M, Barroso CG (2012) Ultrasound assisted extraction of phenolic compounds from grapes. Anal Chim Acta 732:100–104

    Article  CAS  PubMed  Google Scholar 

  11. Ciğeroğlu Z, Aras Ö, Pinto CA, Bayramoglu M, Kırbaşlar Şİ, Lorenzo JM, Barba FJ, Saraiva JA, Şahin S (2018) Optimization of ultrasound-assisted extraction of phenolic compounds from grapefruit (Citrus paradisi Macf.) leaves via D-optimal design and artificial neural network design with categorical and quantitative variables. J Sci Food Agric 98:4584–4596

    Article  CAS  PubMed  Google Scholar 

  12. Korkut I, Bayramoglu M (2014) Various aspects of ultrasound assisted emulsion polymerization process. Ultrason Sonochem 21:1592–1599

    Article  CAS  PubMed  Google Scholar 

  13. Tavčar Benković E, Grohar T, Žigon D, Švajger U, Janeš D, Kreft S, Štrukelj B (2014) Chemical composition of the silver fir (Abies alba) bark extract Abigenol® and its antioxidant activity. Ind Crop Prod 52:23–28

    Article  CAS  Google Scholar 

  14. Singleton VL, Orthofer R, Lamuela-Raventós RM (1999) Analysis of total phenols and other oxidation substrates and antioxidants by means of folin-ciocalteu reagent. In: Lester P (ed) Methods in enzymology. Academic Press, Cambridge, pp 152–178

    Google Scholar 

  15. Brighente IMC, Dias M, Verdi LG, Pizzolatti MG (2007) Antioxidant activity and total phenolic content of some Brazilian species. Pharm Biol 45:156–161

    Article  CAS  Google Scholar 

  16. Giusti MM, Wrolstad RE (2001) Anthocyanins. Characterization and measurement of anthocyanins by UV-visible spectroscopy. In: Wrolstad RE (ed) Current protocos in food analytical chemistry. John Wiley & Sons, New York unit F1.2.1−1

    Google Scholar 

  17. Kumarasamy Y, Byres M, Cox PJ, Jaspars M, Nahar L, Sarker SD (2007) Screening seeds of some Scottish plants for free-radical scavenging activity. Phytother Res 21:615–621

    Article  PubMed  Google Scholar 

  18. Re R, Pellegrini N, Proteggente A, Pannala A, Yang M, RiceEvans C (1999) Antioxidant activity applying an improved ABTS radical cation decolorizationassay. Free Radic Biol Med 26:1231–1237

    Article  CAS  PubMed  Google Scholar 

  19. Minekus M, Alminger M, Alvito P, Ballance S, Bohn T, Bourlieu C, Carriére F, Boutrou R et al (2014) A standardised static in vitro digestion method suitable for food– an international consensus. Food Funct 5:1113–1124

    Article  CAS  PubMed  Google Scholar 

  20. Mihailović V, Kreft S, Tavčar Benković E, Ivanović N, Stanković MS (2016) Chemical profile, antioxidant activity and stability in stimulated gastrointestinal tract model system of three Verbascum species. Ind Crop Prod 89:141–151

    Article  CAS  Google Scholar 

  21. Robards K (2003) Strategies for the determination of bioactive phenols in plants, fruit and vegetables. J Chromatogr A 1000:657–691

    Article  CAS  PubMed  Google Scholar 

  22. Derringer G, Suich R (1980) Simultaneous optimization of several response variables. J Qual Technol 12:214–219

    Article  Google Scholar 

  23. Milivojevic J, Maksimovic V, Nikolic M, bogdanovic J, Maletic R, Milatovic D (2011) Chemical and antioxidant properties of cultivated and wild Fragaria and Rubus berries. J Food Qual 34:1–9

    Article  CAS  Google Scholar 

  24. Yang JW, Choi IS (2017) Comparison of the phenolic composition and antioxidant activity of Korean black raspberry, Bokbunja, (Rubus coreanus Miquel) with those of six other berries. CyTA – J Food 15:110–117. https://doi.org/10.1080/19476337.2016.1219390

    Article  CAS  Google Scholar 

  25. Diaconeasa Z, Ranga F, Rugină D, Leopold L, Pop O, Vodnar D, Cuibus L, Socaciu C (2015) Phenolic content and their antioxidant activity in various berries cultivated in Romania. Bull UASVM Food Sci Technol 72:99–103

    CAS  Google Scholar 

  26. Mikulic-Petkovsek M, Schmitzer V, Slatnar A, Stampar F, Veberic R (2012) Composition of sugars, organic acids, and total phenolics in 25 wild or cultivated berry species. J Food Sci 77:C1064–C1070

    Article  CAS  PubMed  Google Scholar 

  27. Bobinaite R, Viškelis P, Venskutonis PR (2012) Variation of total phenolics, anthocyanins, ellagic acid and radical scavenging capacity in various raspberry (Rubus spp.) cultivars. Food Chem 132:1495–1501

    Article  CAS  PubMed  Google Scholar 

  28. Sariburun E, Sahin S, Demir C, Turkben C, Uylaser V (2010) Phenolic content and antioxidant activity of raspberry and blackberry cultivars. J Food Sci 75:C328–C335

    Article  CAS  PubMed  Google Scholar 

  29. Strugala P, Loi S, Bazanow B, Kuropka P, Kucharska AZ, Wloch A, Gabrielska J (2018) A comprehensive study on the biological activity of elderberry extract and cyanidin 3-O-glucoside and their interactions with membranes and human serum albumin. Molecules 23:E2566. https://doi.org/10.3390/molecules23102566

    Article  CAS  PubMed  Google Scholar 

  30. de Souza VR, Pereira PA, da Silva TL, de Oliveira Lima LC, Pio R, Queiroz F (2014) Determination of the bioactive compounds, antioxidant activity and chemical composition of Brazilian blackberry, red raspberry, strawberry, blueberry and sweet cherry fruits. Food Chem 156:362–368

    Article  CAS  PubMed  Google Scholar 

  31. McDougall GJ, Dobson P, Smith P, Blake A, Stewart D (2005) Assessing potential bioavailability of raspberry anthocyanins using an in vitro digestion system. J Agric Food Chem 53:5896–5904

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This work is supported by the Ministry of Education, Science and Technological Development of the Republic of Serbia (Grants no. OI 172016, III 43004 and OI 175039).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ljubinka G. Joksović.

Ethics declarations

Conflict of Interest

The authors declare no conflict of interest.

Human and Animal Studies

This article does not contain any studies with human or animal subjects.

Informed Consent

Informed consent was obtained from all individual participants included in the study.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

ESM 1

(DOCX 923 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mihailović, N.R., Mihailović, V.B., Ćirić, A.R. et al. Analysis of Wild Raspberries (Rubus idaeus L.): Optimization of the Ultrasonic-Assisted Extraction of Phenolics and a New Insight in Phenolics Bioaccessibility. Plant Foods Hum Nutr 74, 399–404 (2019). https://doi.org/10.1007/s11130-019-00756-4

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11130-019-00756-4

Keywords

Navigation