Skip to main content

Advertisement

Log in

A broad range of symptoms in allgrove syndrome: single center experience in Southeast Anatolia

  • Original Article
  • Published:
Journal of Endocrinological Investigation Aims and scope Submit manuscript

Abstract

Background

Allgrove syndrome (OMIM 231550) is a rare autosomal recessive disease characterized by non-CAH primary adrenal insufficiency (non-CAH PAI), alacrima, and achalasia. It is caused by mutations in the AAAS gene. The syndrome is also associated with variable progressive neurological impairment and dermatological abnormalities.

Methods and results

We diagnosed 23 patients from 14 families with Allgrove syndrome, based on the presence of at least two characteristic symptoms, usually adrenal insufficiency and alacrima, between 2008 and 2018. A previously described nonsense variant of AAAS was detected in 19 patients from 12 families at homozygous state. Another novel homozygous mutation (c.394-397delCTGT) in AAAS was detected in four patients from two families. Presenting symptoms were alacrima (23/23; 100%), adrenal insufficiency (18/23; 78%), achalasia (13/23; 57%), short stature/growth retardation (16/23; 70%), hyperreflexia (15/23; 65%), palmoplantar hyperkeratosis (13/23; 57%), hyperpigmentation of the skin (10/23; 43%), hypoglycemia-induced convulsion (7/23; 30%), swallowing difficulty and vomiting (6/23; 26%). Serum DHEAS concentrations were low in all patients (23/23; 100%).

Conclusions

Clinical symptoms vary even among patients carrying the same mutation. Triple A syndrome should be considered in the etiology of non-CAH PAI in Arab populations and in Southeast Turkey. Any child with non-CAH PAI should be evaluated for the presence of alacrima and/or achalasia or family history of alacrima and/or achalasia. Children with alacrima and/or achalasia should also be investigated for adrenal insufficiency. Definitive molecular diagnosis is essential for early diagnosis and management of adrenal insufficiency, neurological symptoms, and growth retardation in patients and early diagnosis of as yet asymptomatic cases in the family, together with genetic counseling.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

Data availability statement

The data that support the findings of this study are available on request from the corresponding author. The data are not publicly available due to privacy or ethical restrictions.

References

  1. Allgrove J, Clayden GS, Macaulay JC (1978) Familial glucocorticoid deficiency with achalasia of the cardia and deficient tear production. The Lancet 311:1284–1286. https://doi.org/10.1016/S0140-6736(78)91268-0

    Article  Google Scholar 

  2. Handschug K, Sperling S, Yoon SJ, Hennig S, Clark AJ, Huebner A (2001) Triple A syndrome is caused by mutations in AAAS, a new WD-repeat protein gene. Hum Mol Genet 10:283–290. https://doi.org/10.1093/hmg/10.3.283

    Article  CAS  PubMed  Google Scholar 

  3. Tullio-Pelet A, Salomon R, Hadj-Rabia S et al (2000) Mutant WD-repeat protein in triple-A syndrome. Nat Genet 26:332–335. https://doi.org/10.1038/81642

    Article  CAS  PubMed  Google Scholar 

  4. Cronshaw JM, Krutchinsky AN, Zhang W, Chait BT, Matunis MJ (2002) Proteomic analysis of the mammalian nuclear pore complex. J Cell Biol 158:915–927. https://doi.org/10.1083/jcb.200206106

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Prasad R, Metherell LA, Clark AJ, Storr HL (2013) Deficiency of ALADIN impairs redox homeostasis in human adrenal cells and inhibits steroidogenesis. Endocrinology 154:3209–3218. https://doi.org/10.1210/en.2013-1241

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Jühlen R, Idkowiak J, Taylor AE et al (2015) Role of ALADIN in human adrenocortical cells for oxidative stress response and steroidogenesis. PLoS One 10:e0124582. https://doi.org/10.1371/journal.pone.0124582

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Kirkgoz T, Guran T (2018) Primary adrenal insufficiency in children: diagnosis and management. Best Pract Res Clin Endocrinol Metab 32:397–424. https://doi.org/10.1016/j.beem.2018.05.010

    Article  CAS  PubMed  Google Scholar 

  8. Kallabi F, Belghuith N, Aloulou H et al (2016) Clinical and genetic characterization of 26 Tunisian patients with Allgrove syndrome. Arch Med Res 47:105–110. https://doi.org/10.1016/j.arcmed.2016.04.004

    Article  CAS  PubMed  Google Scholar 

  9. Tebaibia A, Boudjella MA, Boutarene D, Benmediouni F, Brahimi H, Oumnia N (2016) Incidence, clinical features and para-clinical findings of achalasia in Algeria: experience of 25 years. World J Gastroenterol 22:8615–8623. https://doi.org/10.3748/wjg.v22.i38.8615

    Article  PubMed  PubMed Central  Google Scholar 

  10. Milenkovic T, Zdravkovic D, Savic N et al (2010) Triple A syndrome: 32 years experience of a single centre (1977–2008). Eur J Pediatr 169:1323–1328. https://doi.org/10.1007/s00431-010-1222-7

    Article  PubMed  Google Scholar 

  11. Gazarian M, Cowell CT, Bonney M, Grigor WG (1995) The “4A” syndrome: adrenocortical insufficiency associated with achalasia, alacrima, autonomic and other neurological abnormalities. Eur J Pediatr 154:18–23. https://doi.org/10.1007/BF01972967

    Article  CAS  PubMed  Google Scholar 

  12. Mathew T, Mehta A, Sarma GR (2013) The fourth “A” of the “4A” syndrome. Pediatr Neurol 49:507–508. https://doi.org/10.1016/j.pediatrneurol.2013.07.015

    Article  PubMed  Google Scholar 

  13. Guran T, Buonocore F, Saka N et al (2016) Rare causes of primary adrenal insufficiency: genetic and clinical characterization of a large nationwide cohort. J Clin Endocrinol Metab 101:284–292. https://doi.org/10.1210/jc.2015-3250

    Article  CAS  PubMed  Google Scholar 

  14. Güran T (2017) Latest Insights on the Etiology and Management of Primary Adrenal Insufficiency in Children. J Clin Res Pediatr Endocrinol 9:9–22. https://doi.org/10.4274/jcrpe.2017.S002

    Article  PubMed  PubMed Central  Google Scholar 

  15. Walter LM, Christa EF (2014) Adrenal cortex and its disorders. In: Sperling Mark A (ed) Pediatric Endocrinology, 4th edn. Elsevier Saunders, Philadelphia, pp 471–532

    Google Scholar 

  16. Patt H, Koehler K, Lodha S et al (2017) Phenotype–genotype spectrum of AAA syndrome from Western India and systematic review of literature. Endocr Connect 6:901–913. https://doi.org/10.1530/EC-17-0255

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Storr HL, Kind B, Parfitt DA et al (2009) Deficiency of ferritin heavy-chain nuclear import in triple a syndrome implies nuclear oxidative damage as the primary disease mechanism. Mol Endocrinol 23:2086–2094. https://doi.org/10.1210/me.2009-0056

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Hirano M, Furiya Y, Asai H, Yasui A, Ueno S (2006) ALADINI482S causes selective failure of nuclear protein import and hypersensitivity to oxidative stress in triple A syndrome. Proc Natl Acad Sci 103:2298–2303. https://doi.org/10.1073/pnas.0505598103

    Article  CAS  PubMed  Google Scholar 

  19. Carvalhal S, Stevense M, Koehler K et al (2017) ALADIN is required for the production of fertile mouse oocytes. Mol Biol Cell 28:2470–2478. https://doi.org/10.1091/mbc.e16-03-0158

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Carvalhal S, Ribeiro SA, Arocena M et al (2015) The nucleoporin ALADIN regulates Aurora A localization to ensure robust mitotic spindle formation. Mol Biol Cell 26:3424–3438. https://doi.org/10.1091/mbc.E15-02-0113

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Roucher-Boulez F, de la Perriere AB, Jacquez A et al (2018) Triple A syndrome: a wide spectrum of adrenal dysfunction. Eur J Endocrinol 178:199–207. https://doi.org/10.1530/EJE-17-0642

    Article  CAS  PubMed  Google Scholar 

  22. Ehrich E, Aranoff G, Johnson WG (1987) Familial achalasia associated with adrenocortical insufficiency, alacrima, and neurological abnormalities. Am J Med Genet 26:637–644. https://doi.org/10.1002/ajmg.1320260319

    Article  CAS  PubMed  Google Scholar 

  23. Lanes R, Plotnick LP, Bynum TE et al (1980) Glucocorticoid and partial mineralocorticoid deficiency associated with achalasia. J Clin Endocrinol Metab 50:268–270. https://doi.org/10.1210/jcem-50-2-268

    Article  CAS  PubMed  Google Scholar 

  24. Mullaney PB, Weatherhead R, Millar L et al (1998) Keratoconjunctivitis sicca associated with achalasia of the cardia, adrenocortical insufficiency, and lacrimal gland degeneration: keratoconjunctivitis sicca secondary to lacrimal gland degeneration may parallel degenerative changes in esophageal and adrenocortical function. Ophthalmology 105:643–650. https://doi.org/10.1016/S0161-6420(98)94018-0

    Article  CAS  PubMed  Google Scholar 

  25. Tsilou E, Stratakis CA, Rubin BI, Hay BN, Patronas N, Kaiser-Kupfer MI (2001) Ophthalmic manifestations of Allgrove syndrome: report of a case. Clin Dysmorphol 10:231–233. https://doi.org/10.1097/00019605-200107000-00016

    Article  CAS  PubMed  Google Scholar 

  26. Brooks BP, Kleta R, Caruso RC, Stuart C, Ludlow J, Stratakis CA (2004) Triple-A syndrome with prominent ophthalmic features and a novel mutation in the AAAS gene: a case report. BMC ophthalmol 4:7. https://doi.org/10.1186/1471-2415-4-7

    Article  PubMed  PubMed Central  Google Scholar 

  27. Merin S, Crawford JS (1971) Hypoglycemia and infantile cataract. Arch Ophthalmol 86:495–498. https://doi.org/10.1001/archopht.1971.01000010497002

    Article  CAS  PubMed  Google Scholar 

  28. Amaya L, Taylor D, Russell-Eggitt I, Nischal KK, Lengyel D (2003) The morphology and natural history of childhood cataracts. Surv Ophthalmol 48:125–144. https://doi.org/10.1016/S0039-6257(02)00462-9

    Article  PubMed  Google Scholar 

  29. Hallal C, Kieling CO, Nunes DL et al (2012) Diagnosis, misdiagnosis, and associated diseases of achalasia in children and adolescents: a twelve-year single center experience. Pediatr Surg Int 28:1211–1217. https://doi.org/10.1007/s00383-012-3214-3

    Article  PubMed  Google Scholar 

  30. Brown B, Agdere L, Muntean C, David K (2016) Alacrima as a harbinger of adrenal insufficiency in a child with Allgrove (AAA) syndrome. Am J Case Rep 17:703–706. https://doi.org/10.12659/ajcr.899546

    Article  PubMed  PubMed Central  Google Scholar 

  31. Phillip M, Hershkovitz E, Schulman H (1996) Adrenal insufficiency after achalasia in the triple-A syndrome. Clin Pediatr (Phila 35:99–100. https://doi.org/10.1177/000992289603500208

    Article  CAS  Google Scholar 

  32. Vallet AE, Verschueren A, Petiot P et al (2012) Neurological features in adult Triple-A (Allgrove) syndrome. J Neurol 259:39–46. https://doi.org/10.1007/s00415-011-6115-9

    Article  PubMed  Google Scholar 

  33. Nakamura K, Yoshida K, Yoshinaga T et al (2010) Adult or late-onset triple A syndrome: case report and literature review. J Neurol Sci 15(297):85–88. https://doi.org/10.1016/j.jns.2010.07.006

    Article  Google Scholar 

  34. Grant DB, Barnes ND, Dumic M et al (1993) Neurological and adrenal dysfunction in the adrenal insufficiency/alacrima/achalasia (3A) syndrome. Arch Dis Child 68:779–782. https://doi.org/10.1136/adc.68.6.779

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Kind B, Koehler K, Krumbholz M, Landgraf D, Huebner A (2010) Intracellular ROS level is increased in fibroblasts of triple A syndrome patients. J Mol Med (Berl) 88:1233–1242. https://doi.org/10.1007/s00109-010-0661-y

    Article  CAS  Google Scholar 

  36. Fragoso MCBV, Albuquerque EVA, Cardoso ALA et al (2017) Triple a syndrome: preliminary response to the antioxidant N-acetylcysteine treatment in a child. Horm Res Paediatr 88:167–171. https://doi.org/10.1159/000465520

    Article  CAS  PubMed  Google Scholar 

  37. Vucicevic-Boras V, Juras D, Gruden-Pokupec JS, Vidovic A (2003) Oral manifestations of triple A syndrome. Eur J Med Res. 31(8):318–320

    Google Scholar 

  38. Razavi Z, Taghdiri MM, Eghbalian F, Bazzazi N (2010) Premature loss of permanent teeth in Allgrove (4A) syndrome in two related families. Iran J Pediatr 20:101–106. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3446014/. Accessed 2010

  39. Tadini G, Besagni F, Callea M et al (2015) Allgrove syndrome: a report of a unique case characterised by peculiar dental findings resembling those of ectodermal dysplasia. Eur J Paediatr Dent 16:324–326. http://admin.ejpd.eu/download/EJPD_2015_4_13.pdf. Accessed 2015

  40. Vahedi M, Fathi S, Allahbakhshi H (2016) Edentulous child with Allgrove syndrome: a rare case report. Korean J Pediatr. 59:456–459. https://doi.org/10.3345/kjp.2016.59.11.456

    Article  PubMed  PubMed Central  Google Scholar 

  41. Dumić M, Mravak-Stipetić M et al (2000) Xerostomia in patients with triple A syndrome–a newly recognised finding. Eur J Pediatr 159:885–888. https://doi.org/10.1007/PL00008361

    Article  PubMed  Google Scholar 

  42. Melek BD, Yacine R, Mehdi D, Badiaa J (2017) Dental involvement in a child with triple A syndrome. Int J Dentistry Oral Sci. 4:498–502. https://doi.org/10.19070/2377-8075-1700098

    Article  Google Scholar 

  43. Yuksel B, Braun R, Topaloglu AK, Mungan NO, Ozer G, Huebner A (2004) Three children with Triple A syndrome due to a mutation (R478X) in the AAAS gene. Horm Res 61:3–6. https://doi.org/10.1159/000075190

    Article  CAS  PubMed  Google Scholar 

  44. Leveille E, Gonorazky HD, Rioux MF et al (2018) Triple A syndrome presenting as complicated hereditary spastic paraplegia. Mol Genet Genomic Med 6:1134–1139. https://doi.org/10.1002/mgg3.492

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Koehler K, Milev MP, Prematilake K et al (2017) A novel TRAPPC11 mutation in two Turkish families associated with cerebral atrophy, global retardation, scoliosis, achalasia and alacrima. J Med Genet 54:176–185. https://doi.org/10.1136/jmedgenet-2016-104108

    Article  CAS  PubMed  Google Scholar 

  46. Koehler K, Malik M, Mahmood S et al (2013) Mutations in GMPPA cause a glycosylation disorder characterized by intellectual disability and autonomic dysfunction. Am J Hum Genet 93:727–734

    Article  CAS  Google Scholar 

Download references

Funding

No external funding was provided for this manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to R. Polat.

Ethics declarations

Conflict of interest

All authors have indicated they have no potential conflicts of interest to disclose. All authors declare that they have no financial relationships relevant to this article to disclose.

Human research

This study has been approved by the appropriate institutional and/or national research ethics committee and has been performed in accordance with the ethical standards as laid down in the 1964 Declaration of Helsinki and its later amendments or comparable ethical standards.

Informed consent

Informed consent was obtained from all individual participants included in the study.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 15 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Polat, R., Ustyol, A., Tuncez, E. et al. A broad range of symptoms in allgrove syndrome: single center experience in Southeast Anatolia. J Endocrinol Invest 43, 185–196 (2020). https://doi.org/10.1007/s40618-019-01099-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40618-019-01099-2

Keywords

Navigation