Skip to main content

Advertisement

Log in

Parameter subset selection techniques for problems in mathematical biology

  • Original Article
  • Published:
Biological Cybernetics Aims and scope Submit manuscript

Abstract

Patient-specific models for diagnostics and treatment planning require reliable parameter estimation and model predictions. Mathematical models of physiological systems are often formulated as systems of nonlinear ordinary differential equations with many parameters and few options for measuring all state variables. Consequently, it can be difficult to determine which parameters can reliably be estimated from available data. This investigation highlights pitfalls associated with practical parameter identifiability and subset selection. The latter refer to the process associated with selecting a subset of parameters that can be identified uniquely by parameter estimation protocols. The methods will be demonstrated using five examples of increasing complexity, as well as with patient-specific model predicting arterial blood pressure. This study demonstrates that methods based on local sensitivities are preferable in terms of computational cost and model fit when good initial parameter values are available, but that global methods should be considered when initial parameter value is not known or poorly understood. For global sensitivity analysis, Morris screening provides results in terms of parameter sensitivity ranking at a much lower computational cost.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. Akaike H (1974) A new look at the statistical model identification. IEEE Trans Autom Control AC–19(6):716–723

    Article  Google Scholar 

  2. Alfrey K (1997) Model of the aortic baroreceptor in rat. PhD thesis, MS thesis. Rice University, Houston

  3. Andersson J, Åkesson J, Diehl M (2012) Casadi: a symbolic package for automatic differentiation andoptimal control. In: Forth S, Hovland P, Phipps E, Utke J, Walther A (eds) Recent advances in algorithmic differentiation. Springer, Berlin, pp 297–307

    Chapter  Google Scholar 

  4. Ashyraliyev M, Fomekong-Nanfack Y, Kaandorp JA, Blom JG (2009) Systems biology: parameter estimation for biochemical models. Febs J 276(4):886–902

    Article  CAS  PubMed  Google Scholar 

  5. Ashyraliyev M, Jaeger J, Blom JG (2008) Parameter estimation and determinability analysis applied to drosophila gap gene circuits. BMC Syst Biol 2(1):83 (19 pages)

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  6. Bellman R, Åström KJ (1970) On structural identifiability. Math Biosci 7(3):329–339

    Article  Google Scholar 

  7. Borgonovo E, Castaings W, Tarantola S (2012) Model emulation and moment-independent sensitivity analysis: an application to environmental modelling. Environ Model Softw 34:105–115. https://doi.org/10.1016/j.envsoft.2011.06.006. http://www.sciencedirect.com/science/article/pii/S1364815211001617

  8. Bugenhagen S, Cowley A, Beard D (2010) Identifying physiological origins of baroreflex dysfunction in salt-sensitive hypertension in the dahl SS rat. Physiol Genom 42:23–41

    Article  Google Scholar 

  9. Daun S, Rubin J, Vodovotz Y, Roy A, Parker R, Clermont G (2008) An ensemble of models of the acute inflammatory response to bacterial lipopolysaccharide in rats: results from parameter space reduction. J Theor Biol 253(4):843–853

    Article  CAS  PubMed  Google Scholar 

  10. Devroye L (1986) Sample-based non-uniform random variate generation. In: Proceedings of the 18th conference on winter simulation. ACM, pp 260–265

  11. Eisenberg M, Harsh J (2017) A confidence building exercise in data and identifiability: modeling cancer chemotherapy as a case study. J Theor Biol 431:63–78

    Article  PubMed  PubMed Central  Google Scholar 

  12. Ellwein L, Pope S, Xie A, Batzel J, Kelley C, Olufsen M (2013) Patient-specific modeling of cardiovascular and respiratory dynamics during hypercapnia. Math Biosci 241(1):56–74

    Article  CAS  PubMed  Google Scholar 

  13. Fournier DA, Skaug HJ, Ancheta J, Ianelli J, Magnusson A, Maunder MN, Nielsen A, Sibert J (2012) Ad model builder: using automatic differentiation for statistical inference of highly parameterized complex nonlinear models. Optim Methods Softw 27(2):233–249. https://doi.org/10.1080/10556788.2011.597854

    Article  Google Scholar 

  14. Griewank A (1989) On automatic differentiation. Math Program Recent Dev Appl 6:83–107

    Google Scholar 

  15. Haario H, Laine M, Mira A, Saksman E (2006) Dram: efficient adaptive MCMC. Stat Comput 16:339–354

    Article  Google Scholar 

  16. Holmberg A (1982) On the practical identifiability of microbial growth models incorporating Michaelis–Menten type nonlinearities. Math Biosci 62(1):23–43

    Article  Google Scholar 

  17. Houska B, Ferreau HJ, Diehl M (2011) Acado toolkitan open-source framework for automatic control and dynamic optimization. Opt Control Appl Methods 32(3):298–312. https://doi.org/10.1002/oca.939

    Article  Google Scholar 

  18. Iooss B, Lemaître P (2015) A review on global sensitivity analysis methods. In: Uncertainty management in simulation-optimization of complex systems. Springer, pp 101–122

  19. Jacquez JA, Greif P (1985) Numerical parameter identifiability and estimability: integrating identifiability, estimability, and optimal sampling design. Math Biosci 77(1):201–227

    Article  Google Scholar 

  20. Jansen M (1999) Analysis of variance designs for model output. Comput Phys Commun 117(1):35–43

    Article  CAS  Google Scholar 

  21. Kelley C (1999) Iterative methods for optimization, vol 18. SIAM, Philadelphia

    Book  Google Scholar 

  22. Li R, Henson M, Kurtz M (2004) Selection of model parameters for off-line parameter estimation. IEEE Trans Control Syst Technol 12(3):12

    Article  CAS  Google Scholar 

  23. Mahdi A, Meshkat N, Sullivant S (2014) Structural identifiability of viscoelastic mechanical systems. PLoS ONE 9(2):e86411

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  24. Mahdi A, Sturdy J, Ottesen J, Olufsen M (2013) Modeling the afferent dynamics of the baroreflex control system. PLoS Comput Biol 9(12):e1003384

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  25. Martins J, Kroo I, Alonso J (2000) An automated method for sensitivity analysis using complex variables. In: Proceeding of the 38th aerospace sciences meeting, p 0689

  26. Miao H, Xia X, Perelson AS, Wu H (2011) On identifiability of nonlinear ode models and applications in viral dynamics. SIAM Rev 53:3–39

    Article  Google Scholar 

  27. Morris M (1991) Factorial sampling plans for preliminary computational experiments. Technometrics 33(2):161–174

    Article  Google Scholar 

  28. Olufsen MS, Ottesen JT (2013) A practical approach to parameter estimation applied to model predicting heart rate regulation. J Math Biol 67(1):39–68

    Article  PubMed  Google Scholar 

  29. Pope S, Ellwein L, Zapata C, Novak V, Kelley C, Olufsen M (2009) Estimation and identification of parameters in a lumped cerebrovascular model. Math Biosci Eng 6(1):93–115

    Article  PubMed  Google Scholar 

  30. Rall LB (1981) Automatic differentiation: techniques and applications. Lecture notes in computer science, vol 120. Springer, New York

    Book  Google Scholar 

  31. Raue A, Kreutz C, Maiwald T, Bachmann J, Schilling M, Klingmüller U, Timmer J (2009) Structural and practical identifiability analysis of partially observed dynamical models by exploiting the profile likelihood. Bioinformatics 25:1923–1929

    Article  CAS  PubMed  Google Scholar 

  32. Rodriguez-Fernandez M, Banga JR, Doyle FJ (2012) Novel global sensitivity analysis methodology accounting for the crucial role of the distribution of input parameters: application to systems biology models. Int J Robust Nonlinear Control 22(10):1082–1102

    Article  Google Scholar 

  33. Saltelli A, Annoni P, Azzini I, Campolongo F, Ratto M, Tarantola S (2010) Variance based sensitivity analysis of model output. Design and estimator for the total sensitivity index. Comput Phys Commun 181(2):259–270

    Article  CAS  Google Scholar 

  34. Saltelli A, Ratto M, Andres T, Campolongo F, Cariboni J, Gatelli D, Saisana M, Tarantola S (2008) Global sensitivity analysis: the primer. Wiley, Chichester

    Google Scholar 

  35. Saltelli A, Ratto M, Tarantola S, Campolongo F, of Ispra European Commission JRC (2006) Sensitivity analysis practices: strategies for model-based inference. Reliab Eng Syst Saf 91(10):1109–1125

  36. Saltelli A, Tarantola S, Chan KPS (1999) A quantitative model-independent method for global sensitivity analysis of model output. Technometrics 41(1):39–56. https://doi.org/10.1080/00401706.1999.10485594

    Article  Google Scholar 

  37. Silverman BW (2018) Density estimation for statistics and data analysis. Routledge, London

    Book  Google Scholar 

  38. Smith RC (2014) Uncertainty quantification: theory, implementation, and applications. SIAM, Philadelphia

    Google Scholar 

  39. Sobol I (1967) On the distribution of points in a cube and the approximate evaluation of integrals. USSR Comput Math Math Phys 7:784–802

    Article  Google Scholar 

  40. Sobol I (1993) Sensitivity estimates for nonlinear mathematical models. Math Model Comput Exp 1(4):407–414

    Google Scholar 

  41. Sobol I (2001) Global sensitivity indices for nonlinear mathematical models and their monte carlo estimates. Math Comput Simul 55(1–3):271–280

  42. Transtrum M, Machta B, Sethna JP (2011) Geometry of nonlinear least squares with applications to sloppy models and optimization. Phys Rev E 83(3):36701

    Article  CAS  Google Scholar 

  43. Vrugt J, Braak CT, Diks C, Robinson B, Hyman J, Higdon D (2009) Accelerating markov chain monte carlo simulation by differential evolution with self-adaptive randomized subspace sampling. Int J Nonlinear Sci Numer Simul 10(3):273–290

    Article  Google Scholar 

  44. Wei P, Lu Z, Yuan X (2013) Monte carlo simulation for moment-independent sensitivity analysis. Reliab Eng Syst Saf 110:60–67. https://doi.org/10.1016/j.ress.2012.09.005. http://www.sciencedirect.com/science/article/pii/S0951832012001858

  45. Wentworth MT, Smith RC, Banks HT (2015) Parameter selection and verification techniques based on global sensitivity analysis illustrated for an HIV model. SIAM/ASA J Uncertain Quantif 4(1):266–297

    Article  Google Scholar 

  46. Williams ND, Wind-Willassen O, Wright AA, Program R, Mehlsen J, Ottesen JT, Olufsen MS (2014) Patient-specific modelling of head-up tilt. Math Med Biol 31(4):365–392

    Article  PubMed  Google Scholar 

  47. Wolfram: Gauss–Newton methods (2013). http://reference.wolfHrBram.com/mathematica/tutorial/UnconstrainedOptimizationGaussHrBNewtonMethods.html

  48. Yao K, Shaw B, Kou B, McAuley K, Bacon D (2003) Modeling ethylene/butene copolymerization with multi-site catalysts: parameter estimability and experimental design. Polym React Eng 11(3):563–588

    Article  CAS  Google Scholar 

Download references

Acknowledgements

Olsen and Olufsen was supported in part by the National Science Foundation (Grant NSF-DMS 1022688 and NSF-DMS 1557761) as well as the Virtual Physiological Rat Project funded by the National Institute of General Medical Sciences (NIH-NIGMS P50 GM094503).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mette S. Olufsen.

Additional information

Communicated by Peter J. Thomas.

This article belongs to the Special Issue on Control Theory in Biology and Medicine. It derived from a workshop at the Mathematical Biosciences Institute, Ohio State University, Columbus, OH, USA.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Olsen, C.H., Ottesen, J.T., Smith, R.C. et al. Parameter subset selection techniques for problems in mathematical biology. Biol Cybern 113, 121–138 (2019). https://doi.org/10.1007/s00422-018-0784-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00422-018-0784-8

Keywords

Navigation