Skip to main content
Log in

Ribosomal DNA and the nucleolus in the context of genome organization

  • Review
  • Published:
Chromosome Research Aims and scope Submit manuscript

Abstract

The nucleolus constitutes a prominent nuclear compartment, a membraneless organelle that was first documented in the 1830s. The fact that specific chromosomal regions were present in the nucleolus was recognized by Barbara McClintock in the 1930s, and these regions were termed nucleolar organizing regions, or NORs. The primary function of ribosomal DNA (rDNA) is to produce RNA components of ribosomes. Yet, ribosomal DNA also plays a pivotal role in nuclear organization by assembling the nucleolus. This review is focused on the rDNA and associated proteins in the context of genome organization. Recent advances in understanding chromatin organization suggest that chromosomes are organized into topological domains by a DNA loop extrusion process. We discuss the perspective that rDNA may also be organized in topological domains constrained by structural maintenance of chromosome protein complexes such as cohesin and condensin. Moreover, biophysical studies indicate that the nucleolar compartment may be formed by active processes as well as phase separation, a perspective that lends further insight into nucleolar organization. The application of the latest perspectives and technologies to this organelle help further elucidate its role in nuclear structure and function.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Abbreviations

rDNA:

ribosomal DNA

NORs:

nucleolar organizing regions

TAD:

topologically associated domain

Hi-C:

high-resolution chromosome conformation capture

ETS:

external transcribed spacer

ITS:

internal transcribed spacer

IGS:

intergenic spacer

SMC:

structural maintenance of chromosome complexes

FC:

fibrillar center

DFC:

dense fibrillar component

GC:

granular component

References

  • Ahmad Y, Boisvert FM, Gregor P, Cobley A, Lamond AI (2009) NOPdb: nucleolar proteome database--2008 update. Nucleic Acids Res 37:D181–D184

    Article  CAS  PubMed  Google Scholar 

  • Akamatsu Y, Kobayashi T (2015) The human RNA polymerase I transcription terminator complex acts as a replication fork barrier that coordinates the progress of replication with rRNA transcription activity. Mol Cell Biol 35:1871–1881

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Alipour E, Marko JF (2012) Self-organization of domain structures by DNA-loop-extruding enzymes. Nucleic Acids Res 40:11202–11212

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ardito G, Lamberti L, Brogger A (1978) Satellite associations of human acrocentric chromosomes identified by trypsin treatment at metaphase. Ann Hum Genet 41:455–462

    Article  CAS  PubMed  Google Scholar 

  • Bakken A, Morgan G, Sollner-Webb B, Roan J, Busby S, Reeder RH (1982) Mapping of transcription initiation and termination signals on Xenopus laevis ribosomal DNA. Proc Natl Acad Sci U S A 79:56–60

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Baranello L, Levens D, Gupta A, Kouzine F (2012) The importance of being supercoiled: how DNA mechanics regulate dynamic processes. Biochim Biophys Acta 1819:632–638

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bazett-Jones DP, Leblanc B, Herfort M, Moss T (1994) Short-range DNA looping by the Xenopus HMG-box transcription factor, xUBF. Science 264:1134–1137

    Article  CAS  PubMed  Google Scholar 

  • Berger AB, Cabal GG, Fabre E, Duong T, Buc H, Nehrbass U, Olivo-Marin JC, Gadal O, Zimmer C (2008) High-resolution statistical mapping reveals gene territories in live yeast. Nat Methods 5:1031–1037

    Article  CAS  PubMed  Google Scholar 

  • Berry J, Weber SC, Vaidya N, Haataja M, Brangwynne CP (2015) RNA transcription modulates phase transition-driven nuclear body assembly. Proc Natl Acad Sci U S A 112:E5237–E5245

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Boisvert FM, van Koningsbruggen S, Navascues J, Lamond AI (2007) The multifunctional nucleolus. Nat Rev Mol Cell Biol 8:574–585

    Article  CAS  PubMed  Google Scholar 

  • Bolzer A, Kreth G, Solovei I, Koehler D, Saracoglu K, Fauth C, Muller S, Eils R, Cremer C, Speicher MR, Cremer T (2005) Three-dimensional maps of all chromosomes in human male fibroblast nuclei and prometaphase rosettes. PLoS Biol 3:e157

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bose T, Lee KK, Lu S, Xu B, Harris B, Slaughter B, Unruh J, Garrett A, McDowell W, Box A, Li H, Peak A, Ramachandran S, Seidel C, Gerton JL (2012) Cohesin proteins promote ribosomal RNA production and protein translation in yeast and human cells. PLoS Genet 8:e1002749

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Boulon S, Westman BJ, Hutten S, Boisvert FM, Lamond AI (2010) The nucleolus under stress. Mol Cell 40:216–227

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Brangwynne CP, Mitchison TJ, Hyman AA (2011) Active liquid-like behavior of nucleoli determines their size and shape in Xenopus laevis oocytes. Proc Natl Acad Sci U S A 108:4334–4339

    Article  PubMed  PubMed Central  Google Scholar 

  • Brown DD, Dawid IB (1968) Specific gene amplification in oocytes. Oocyte nuclei contain extrachromosomal replicas of the genes for ribosomal RNA. Science 160:272–280

    Article  CAS  PubMed  Google Scholar 

  • Buchwalter A, Hetzer MW (2017) Nucleolar expansion and elevated protein translation in premature aging. Nat Commun 8:328

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Burger K, Muhl B, Harasim T, Rohrmoser M, Malamoussi A, Orban M, Kellner M, Gruber-Eber A, Kremmer E, Holzel M, Eick D (2010) Chemotherapeutic drugs inhibit ribosome biogenesis at various levels. J Biol Chem 285:12416–12425

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Busslinger GA, Stocsits RR, van der Lelij P, Axelsson E, Tedeschi A, Galjart N, Peters JM (2017) Cohesin is positioned in mammalian genomes by transcription, CTCF and Wapl. Nature 544:503–507

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Canela A, Maman Y, Jung S, Wong N, Callen E, Day A, Kieffer-Kwon KR, Pekowska A, Zhang H, Rao SSP, Huang SC, McKinnon PJ, Aplan PD, Pommier Y, Aiden EL, Casellas R, Nussenzweig A (2017) Genome organization drives chromosome fragility. Cell 170:507–521 e518

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Capranico G, Tinelli S, Austin CA, Fisher ML, Zunino F (1992) Different patterns of gene expression of topoisomerase II isoforms in differentiated tissues during murine development. Biochim Biophys Acta 1132:43–48

    Article  CAS  PubMed  Google Scholar 

  • Caron P, Aymard F, Iacovoni JS, Briois S, Canitrot Y, Bugler B, Massip L, Losada A, Legube G (2012) Cohesin protects genes against gammaH2AX induced by DNA double-strand breaks. PLoS Genet 8:e1002460

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Carvalho C, Pereira HM, Ferreira J, Pina C, Mendonca D, Rosa AC, Carmo-Fonseca M (2001) Chromosomal G-dark bands determine the spatial organization of centromeric heterochromatin in the nucleus. Mol Biol Cell 12:3563–3572

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Chen D, Belmont AS, Huang S (2004) Upstream binding factor association induces large-scale chromatin decondensation. Proc Natl Acad Sci U S A 101:15106–15111

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Chubb JR, Boyle S, Perry P, Bickmore WA (2002) Chromatin motion is constrained by association with nuclear compartments in human cells. Curr Biol 12:439–445

    Article  CAS  PubMed  Google Scholar 

  • Cohen AA, Geva-Zatorsky N, Eden E, Frenkel-Morgenstern M, Issaeva I, Sigal A, Milo R, Cohen-Saidon C, Liron Y, Kam Z, Cohen L, Danon T, Perzov N, Alon U (2008) Dynamic proteomics of individual cancer cells in response to a drug. Science 322:1511–1516

    Article  CAS  PubMed  Google Scholar 

  • Collins I, Weber A, Levens D (2001) Transcriptional consequences of topoisomerase inhibition. Mol Cell Biol 21:8437–8451

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Conconi A, Widmer RM, Koller T, Sogo JM (1989) Two different chromatin structures coexist in ribosomal RNA genes throughout the cell cycle. Cell 57:753–761

    Article  CAS  PubMed  Google Scholar 

  • Cremer T, Kurz A, Zirbel R, Dietzel S, Rinke B, Schrock E, Speicher MR, Mathieu U, Jauch A, Emmerich P, Scherthan H, Ried T, Cremer C, Lichter P (1993) Role of chromosome territories in the functional compartmentalization of the cell nucleus. Cold Spring Harb Symp Quant Biol 58:777–792

    Article  CAS  PubMed  Google Scholar 

  • Cuylen S, Metz J, Haering CH (2011) Condensin structures chromosomal DNA through topological links. Nat Struct Mol Biol 18:894–901

    Article  CAS  PubMed  Google Scholar 

  • D'Amours D, Stegmeier F, Amon A (2004) Cdc14 and condensin control the dissolution of cohesin-independent chromosome linkages at repeated DNA. Cell 117:455–469

    Article  CAS  PubMed  Google Scholar 

  • de la Cruz J, Karbstein K, Woolford JL Jr (2015) Functions of ribosomal proteins in assembly of eukaryotic ribosomes in vivo. Annu Rev Biochem 84:93–129

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • de Wit E, Vos ES, Holwerda SJ, Valdes-Quezada C, Verstegen MJ, Teunissen H, Splinter E, Wijchers PJ, Krijger PH, de Laat W (2015) CTCF binding polarity determines chromatin looping. Mol Cell 60:676–684

    Article  CAS  PubMed  Google Scholar 

  • Derenzini M, Montanaro L, Trere D (2009) What the nucleolus says to a tumour pathologist. Histopathology 54:753–762

    Article  PubMed  Google Scholar 

  • Dixon JR, Gorkin DU, Ren B (2016) Chromatin domains: the unit of chromosome organization. Mol Cell 62:668–680

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Donati G, Peddigari S, Mercer CA, Thomas G (2013) 5S ribosomal RNA is an essential component of a nascent ribosomal precursor complex that regulates the Hdm2-p53 checkpoint. Cell Rep 4:87–98

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Duncan FE, Jasti S, Paulson A, Kelsh JM, Fegley B, Gerton JL (2017) Age-associated dysregulation of protein metabolism in the mammalian oocyte. Aging Cell 16:1381–1393

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • El Hage A, French SL, Beyer AL, Tollervey D (2010) Loss of topoisomerase I leads to R-loop-mediated transcriptional blocks during ribosomal RNA synthesis. Genes Dev 24:1546–1558

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Falahati H, Wieschaus E (2017) Independent active and thermodynamic processes govern the nucleolus assembly in vivo. Proc Natl Acad Sci U S A 114:1335–1340

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Falahati H, Pelham-Webb B, Blythe S, Wieschaus E (2016) Nucleation by rRNA dictates the precision of nucleolus assembly. Curr Biol 26:277–285

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ferguson-Smith MA, Handmaker SD (1961) Observations on the satellited human chromosomes. Lancet 1:638–640

    Article  CAS  PubMed  Google Scholar 

  • Feric M, Vaidya N, Harmon TS, Mitrea DM, Zhu L, Richardson TM, Kriwacki RW, Pappu RV, Brangwynne CP (2016) Coexisting liquid phases underlie nucleolar subcompartments. Cell 165:1686–1697

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ferreira J, Paolella G, Ramos C, Lamond AI (1997) Spatial organization of large-scale chromatin domains in the nucleus: a magnified view of single chromosome territories. J Cell Biol 139:1597–1610

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Floutsakou I, Agrawal S, Nguyen TT, Seoighe C, Ganley AR, McStay B (2013) The shared genomic architecture of human nucleolar organizer regions. Genome Res 23:2003–2012

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Foe VE (1978) Modulation of ribosomal RNA synthesis in Oncopeltus fasciatus: an electron microscopic study of the relationship between changes in chromatin structure and transcriptional activity. Cold Spring Harb Symp Quant Biol 42(Pt 2):723–740

    Article  CAS  PubMed  Google Scholar 

  • Fraser J, Williamson I, Bickmore WA, Dostie J (2015) An overview of genome organization and how we got there: from FISH to Hi-C. Microbiol Mol Biol Rev 79:347–372

    Article  PubMed  PubMed Central  Google Scholar 

  • Freeman L, Aragon-Alcaide L, Strunnikov A (2000) The condensin complex governs chromosome condensation and mitotic transmission of rDNA. J Cell Biol 149:811–824

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • French SL, Sikes ML, Hontz RD, Osheim YN, Lambert TE, El Hage A, Smith MM, Tollervey D, Smith JS, Beyer AL (2011) Distinguishing the roles of topoisomerases I and II in relief of transcription-induced torsional stress in yeast rRNA genes. Mol Cell Biol 31:482–494

    Article  CAS  PubMed  Google Scholar 

  • Fromont-Racine M, Senger B, Saveanu C, Fasiolo F (2003) Ribosome assembly in eukaryotes. Gene 313:17–42

    Article  CAS  PubMed  Google Scholar 

  • Fudenberg G, Imakaev M, Lu C, Goloborodko A, Abdennur N, Mirny LA (2016) Formation of chromosomal domains by loop extrusion. Cell Rep 15:2038–2049

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Gard S, Light W, Xiong B, Bose T, McNairn AJ, Harris B, Fleharty B, Seidel C, Brickner JH, Gerton JL (2009) Cohesinopathy mutations disrupt the subnuclear organization of chromatin. J Cell Biol 187:455–462

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Gardner RJM, Sutherland GR, Shaffer LG (2011) Chromosome abnormalities and genetic counseling. Oxford University Press, New York

  • Garg LC, DiAngelo S, Jacob ST (1987) Role of DNA topoisomerase I in the transcription of supercoiled rRNA gene. Proc Natl Acad Sci U S A 84:3185–3188

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Gebrane-Younes J, Fomproix N, Hernandez-Verdun D (1997) When rDNA transcription is arrested during mitosis, UBF is still associated with non-condensed rDNA. J Cell Sci 110(Pt 19):2429–2440

    CAS  PubMed  Google Scholar 

  • Gerton JL (2012) Translational mechanisms at work in the cohesinopathies. Nucleus 3:520–525

    Article  PubMed  PubMed Central  Google Scholar 

  • Gibbons JG, Branco AT, Godinho SA, Yu S, Lemos B (2015) Concerted copy number variation balances ribosomal DNA dosage in human and mouse genomes. Proc Natl Acad Sci U S A 112:2485–2490

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Gibcus JH, Samejima K, Goloborodko A, Samejima I, Naumova N, Nuebler J, Kanemaki MT, Xie L, Paulson JR, Earnshaw WC, Mirny LA, Dekker J (2018) A pathway for mitotic chromosome formation. Science 359:eaao6135

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Glynn EF, Megee PC, Yu HG, Mistrot C, Unal E, Koshland DE, DeRisi JL, Gerton JL (2004) Genome-wide mapping of the cohesin complex in the yeast Saccharomyces cerevisiae. PLoS Biol 2:E259

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Gonzalez IL, Sylvester JE (1995) Complete sequence of the 43-kb human ribosomal DNA repeat: analysis of the intergenic spacer. Genomics 27:320–328

    Article  CAS  PubMed  Google Scholar 

  • Goodpasture C, Bloom SE (1975) Visualization of nucleolar organizer regions im mammalian chromosomes using silver staining. Chromosoma 53:37–50

    Article  CAS  PubMed  Google Scholar 

  • Govoni M, Farabegoli F, Pession A, Novello F (1994) Inhibition of topoisomerase II activity and its effect on nucleolar structure and function. Exp Cell Res 211:36–41

    Article  CAS  PubMed  Google Scholar 

  • Grob A, McStay B (2014) Construction of synthetic nucleoli and what it tells us about propagation of sub-nuclear domains through cell division. Cell Cycle 13:2501–2508

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Grob A, Colleran C, McStay B (2014) Construction of synthetic nucleoli in human cells reveals how a major functional nuclear domain is formed and propagated through cell division. Genes Dev 28:220–230

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Grozdanov P, Georgiev O, Karagyozov L (2003) Complete sequence of the 45-kb mouse ribosomal DNA repeat: analysis of the intergenic spacer. Genomics 82:637–643

    Article  CAS  PubMed  Google Scholar 

  • Grummt I (2013) The nucleolus-guardian of cellular homeostasis and genome integrity. Chromosoma 122:487–497

    Article  CAS  PubMed  Google Scholar 

  • Haaf T, Schmid M (1989) Centromeric association and non-random distribution of centromeres in human tumour cells. Hum Genet 81:137–143

    Article  CAS  PubMed  Google Scholar 

  • Haltiner MM, Smale ST, Tjian R (1986) Two distinct promoter elements in the human rRNA gene identified by linker scanning mutagenesis. Mol Cell Biol 6:227–235

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hannan RD, Drygin D, Pearson RB (2013) Targeting RNA polymerase I transcription and the nucleolus for cancer therapy. Expert Opin Ther Targets 17:873–878

    Article  CAS  PubMed  Google Scholar 

  • Harding SM, Boiarsky JA, Greenberg RA (2015) ATM dependent silencing links nucleolar chromatin reorganization to DNA damage recognition. Cell Rep 13:251–259

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Harris B, Bose T, Lee KK, Wang F, Lu S, Ross RT, Zhang Y, French SL, Beyer AL, Slaughter BD, Unruh JR, Gerton JL (2014) Cohesion promotes nucleolar structure and function. Mol Biol Cell 25:337–346

    Article  PubMed  PubMed Central  Google Scholar 

  • Harvey SH, Krien MJ, O'Connell MJ (2002) Structural maintenance of chromosomes (SMC) proteins, a family of conserved ATPases. Genome Biol 3:REVIEWS3003

    Article  PubMed  PubMed Central  Google Scholar 

  • Heidinger-Pauli JM, Mert O, Davenport C, Guacci V, Koshland D (2010) Systematic reduction of cohesin differentially affects chromosome segregation, condensation, and DNA repair. Curr Biol. 20:957–963

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Heliot L, Kaplan H, Lucas L, Klein C, Beorchia A, Doco-Fenzy M, Menager M, Thiry M, O'Donohue MF, Ploton D (1997) Electron tomography of metaphase nucleolar organizer regions: evidence for a twisted-loop organization. Mol Biol Cell 8:2199–2216

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Henderson AS, Warburton D, Atwood KC (1972) Location of ribosomal DNA in the human chromosome complement. Proc Natl Acad Sci U S A 69:3394–3398

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Herdman C, Mars JC, Stefanovsky VY, Tremblay MG, Sabourin-Felix M, Lindsay H, Robinson MD, Moss T (2017) A unique enhancer boundary complex on the mouse ribosomal RNA genes persists after loss of Rrn3 or UBF and the inactivation of RNA polymerase I transcription. PLoS Genet 13:e1006899

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hirota T, Gerlich D, Koch B, Ellenberg J, Peters JM (2004) Distinct functions of condensin I and II in mitotic chromosome assembly. J Cell Sci 117:6435–6445

    Article  CAS  PubMed  Google Scholar 

  • Holmberg Olausson K, Nister M, Lindstrom MS (2012) p53 -dependent and -independent nucleolar stress responses. Cell 1:774–798

    Article  CAS  Google Scholar 

  • Huang K, Jia J, Wu C, Yao M, Li M, Jin J, Jiang C, Cai Y, Pei D, Pan G, Yao H (2013) Ribosomal RNA gene transcription mediated by the master genome regulator protein CCCTC-binding factor (CTCF) is negatively regulated by the condensin complex. J Biol Chem 288:26067–26077

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hult C, Adalsteinsson D, Vasquez PA, Lawrimore J, Bennett M, York A, Cook D, Yeh E, Forest MG, Bloom K (2017) Enrichment of dynamic chromosomal crosslinks drive phase separation of the nucleolus. Nucleic Acids Res 45:11159–11173

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ide S, Miyazaki T, Maki H, Kobayashi T (2010) Abundance of ribosomal RNA gene copies maintains genome integrity. Science 327:693–696

    Article  CAS  PubMed  Google Scholar 

  • Jacobs PA, Mayer M, Morton NE (1976) Acrocentric chromosome associations in man. Am J Hum Genet 28:567–576

    CAS  PubMed  PubMed Central  Google Scholar 

  • Kermekchiev M, Workman JL, Pikaard CS (1997) Nucleosome binding by the polymerase I transactivator upstream binding factor displaces linker histone H1. Mol Cell Biol 17:5833–5842

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Khan T, Kandola TS, Wu J, Venkatesan S, Ketter E, Lange JJ, Rodriguez Gama A, Box A, Unruh JR, Cook M, Halfmann R (2018) Quantifying nucleation in vivo reveals the physical basis of prion-like phase behavior. Mol Cell 71:155–168 e157

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kurihara Y, Suh DS, Suzuki H, Moriwaki K (1994) Chromosomal locations of Ag-NORs and clusters of ribosomal DNA in laboratory strains of mice. Mamm Genome 5:225–228

    Article  CAS  PubMed  Google Scholar 

  • Laloraya S, Guacci V, Koshland D (2000) Chromosomal addresses of the cohesin component Mcd1p. J Cell Biol 151:1047–1056

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Learned RM, Learned TK, Haltiner MM, Tjian RT (1986) Human rRNA transcription is modulated by the coordinate binding of two factors to an upstream control element. Cell 45:847–857

    Article  CAS  PubMed  Google Scholar 

  • Leger I, Guillaud M, Krief B, Brugal G (1994) Interactive computer-assisted analysis of chromosome 1 colocalization with nucleoli. Cytometry 16:313–323

    Article  CAS  PubMed  Google Scholar 

  • Leppard JB, Champoux JJ (2005) Human DNA topoisomerase I: relaxation, roles, and damage control. Chromosoma 114:75–85

    Article  CAS  PubMed  Google Scholar 

  • Leung AK, Trinkle-Mulcahy L, Lam YW, Andersen JS, Mann M, Lamond AI (2006) NOPdb: nucleolar proteome database. Nucleic Acids Res 34:D218–D220

    Article  CAS  PubMed  Google Scholar 

  • Lieberman-Aiden E, van Berkum NL, Williams L, Imakaev M, Ragoczy T, Telling A, Amit I, Lajoie BR, Sabo PJ, Dorschner MO, Sandstrom R, Bernstein B, Bender MA, Groudine M, Gnirke A, Stamatoyannopoulos J, Mirny LA, Lander ES, Dekker J (2009) Comprehensive mapping of long-range interactions reveals folding principles of the human genome. Science 326:289–293

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lin Y, Currie SL, Rosen MK (2017) Intrinsically disordered sequences enable modulation of protein phase separation through distributed tyrosine motifs. J Biol Chem 292:19110–19120

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Losada A (2014) Cohesin in cancer: chromosome segregation and beyond. Nat Rev Cancer 14:389–393

    Article  CAS  PubMed  Google Scholar 

  • Lu S, Lee KK, Harris B, Xiong B, Bose T, Saraf A, Hattem G, Florens L, Seidel C, Gerton JL (2014) The cohesin acetyltransferase Eco1 coordinates rDNA replication and transcription. EMBO Rep 15:609–617

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Machin F, Paschos K, Jarmuz A, Torres-Rosell J, Pade C, Aragon L (2004) Condensin regulates rDNA silencing by modulating nucleolar Sir2p. Curr Biol 14:125–130

    Article  CAS  PubMed  Google Scholar 

  • Mangan H, Gailin MO, McStay B (2017) Integrating the genomic architecture of human nucleolar organizer regions with the biophysical properties of nucleoli. FEBS J 284:3977–3985

    Article  CAS  PubMed  Google Scholar 

  • Mars JC, Sabourin-Felix M, Tremblay MG, Moss T (2018) A deconvolution protocol for ChIP-Seq reveals analogous enhancer structures on the mouse and human ribosomal RNA genes. G3 (Bethesda) 8:303–314

    Article  CAS  Google Scholar 

  • Matsuda Y, Moriwaki K, Chapman VM, Hoi-Sen Y, Akbarzadeh J, Suzuki H (1994) Chromosomal mapping of mouse 5S rRNA genes by direct R-banding fluorescence in situ hybridization. Cytogenet Cell Genet 66:246–249

    Article  CAS  PubMed  Google Scholar 

  • Mayer C, Schmitz KM, Li J, Grummt I, Santoro R (2006) Intergenic transcripts regulate the epigenetic state of rRNA genes. Mol Cell 22:351–361

    Article  CAS  PubMed  Google Scholar 

  • Mayer C, Neubert M, Grummt I (2008) The structure of NoRC-associated RNA is crucial for targeting the chromatin remodelling complex NoRC to the nucleolus. EMBO Rep 9:774–780

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • McStay B (2016) Nucleolar organizer regions: genomic ‘dark matter’ requiring illumination. Genes Dev 30:1598–1610

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • McStay B, Grummt I (2008) The epigenetics of rRNA genes: from molecular to chromosome biology. Annu Rev Cell Dev Biol 24:131–157

    Article  CAS  PubMed  Google Scholar 

  • Meaburn KJ, Misteli T (2007) Cell biology: chromosome territories. Nature 445:379–781

    Article  CAS  PubMed  Google Scholar 

  • Meier M, Grant J, Dowdle A, Thomas A, Gerton J, Collas P, O'Sullivan JM, Horsfield JA (2018) Cohesin facilitates zygotic genome activation in zebrafish. Development 145:dev156521

    Article  CAS  PubMed  Google Scholar 

  • Miller OL Jr, Beatty BR (1969a) Extrachromosomal nucleolar genes in amphibian oocytes. Genetics 61(Suppl):133–143

    Google Scholar 

  • Miller OL Jr, Beatty BR (1969b) Visualization of nucleolar genes. Science 164:955–957

    Article  PubMed  Google Scholar 

  • Moss T, Stefanovsky VY (2002) At the center of eukaryotic life. Cell 109:545–548

    Article  CAS  PubMed  Google Scholar 

  • Mougey EB, O'Reilly M, Osheim Y, Miller OL Jr, Beyer A, Sollner-Webb B (1993) The terminal balls characteristic of eukaryotic rRNA transcription units in chromatin spreads are rRNA processing complexes. Genes Dev 7:1609–1619

    Article  CAS  PubMed  Google Scholar 

  • Nasmyth K, Haering CH (2009) Cohesin: its roles and mechanisms. Annu Rev Genet 43:525–558

    Article  CAS  PubMed  Google Scholar 

  • Nemeth A, Langst G (2011) Genome organization in and around the nucleolus. Trends Genet 27:149–156

    Article  CAS  PubMed  Google Scholar 

  • Nemeth A, Guibert S, Tiwari VK, Ohlsson R, Langst G (2008) Epigenetic regulation of TTF-I-mediated promoter-terminator interactions of rRNA genes. EMBO J 27:1255–1265

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Nemeth A, Conesa A, Santoyo-Lopez J, Medina I, Montaner D, Peterfia B, Solovei I, Cremer T, Dopazo J, Langst G (2010) Initial genomics of the human nucleolus. PLoS Genet 6:e1000889

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Neuwald AF, Hirano T (2000) HEAT repeats associated with condensins, cohesins, and other complexes involved in chromosome-related functions. Genome Res 10:1445–1452

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Nitiss JL (2009) DNA topoisomerase II and its growing repertoire of biological functions. Nat Rev Cancer 9:327–337

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Nora EP, Goloborodko A, Valton AL, Gibcus JH, Uebersohn A, Abdennur N, Dekker J, Mirny LA, Bruneau BG (2017) Targeted degradation of CTCF decouples local insulation of chromosome domains from genomic compartmentalization. Cell 169:930–944 e922

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Nuebler J, Fudenberg G, Imakaev M, Abdennur N, Mirny LA (2018) Chromatin organization by an interplay of loop extrusion and compartmental segregation. Proc Natl Acad Sci U S A 115:E6697–E6706

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ochs RL, Press RI (1992) Centromere autoantigens are associated with the nucleolus. Exp Cell Res 200:339–350

    Article  CAS  PubMed  Google Scholar 

  • Olson MO (2004) Sensing cellular stress: another new function for the nucleolus? Sci STKE 2004:pe10

    PubMed  Google Scholar 

  • Ono T, Losada A, Hirano M, Myers MP, Neuwald AF, Hirano T (2003) Differential contributions of condensin I and condensin II to mitotic chromosome architecture in vertebrate cells. Cell 115:109–121

    Article  CAS  PubMed  Google Scholar 

  • Ono T, Fang Y, Spector DL, Hirano T (2004) Spatial and temporal regulation of condensins I and II in mitotic chromosome assembly in human cells. Mol Biol Cell 15:3296–3308

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Onofrillo C, Galbiati A, Montanaro L, Derenzini M (2017) The pre-existing population of 5S rRNA effects p53 stabilization during ribosome biogenesis inhibition. Oncotarget 8:4257–4267

    Article  PubMed  Google Scholar 

  • Padeken J, Mendiburo MJ, Chlamydas S, Schwarz HJ, Kremmer E, Heun P (2013) The nucleoplasmin homolog NLP mediates centromere clustering and anchoring to the nucleolus. Mol Cell 50:236–249

    Article  CAS  PubMed  Google Scholar 

  • Parelho V, Hadjur S, Spivakov M, Leleu M, Sauer S, Gregson HC, Jarmuz A, Canzonetta C, Webster Z, Nesterova T, Cobb BS, Yokomori K, Dillon N, Aragon L, Fisher AG, Merkenschlager M (2008) Cohesins functionally associate with CTCF on mammalian chromosome arms. Cell 132:422–433

    Article  CAS  PubMed  Google Scholar 

  • Pederson T (2011) The nucleolus. Cold Spring Harb Perspect Biol 3:a000638

    PubMed  PubMed Central  Google Scholar 

  • Peng XP, Lim S, Li S, Marjavaara L, Chabes A, Zhao X (2018) Acute Smc5/6 depletion reveals its primary role in rDNA replication by restraining recombination at fork pausing sites. PLoS Genet 14:e1007129

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Phillips JE, Corces VG (2009) CTCF: master weaver of the genome. Cell 137:1194–1211

    Article  PubMed  PubMed Central  Google Scholar 

  • Piskadlo E, Oliveira RA (2017) A topology-centric view on mitotic chromosome architecture. Int J Mol Sci 18:2751

    Article  CAS  PubMed Central  Google Scholar 

  • Pruitt SC, Qin M, Wang J, Kunnev D, Freeland A (2017) A signature of genomic instability resulting from deficient replication licensing. PLoS Genet 13:e1006547

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Rao SS, Huntley MH, Durand NC, Stamenova EK, Bochkov ID, Robinson JT, Sanborn AL, Machol I, Omer AD, Lander ES, Aiden EL (2014) A 3D map of the human genome at kilobase resolution reveals principles of chromatin looping. Cell 159:1665–1680

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ray S, Panova T, Miller G, Volkov A, Porter AC, Russell J, Panov KI, Zomerdijk JC (2013) Topoisomerase IIalpha promotes activation of RNA polymerase I transcription by facilitating pre-initiation complex formation. Nat Commun 4:1598

    Article  CAS  PubMed  Google Scholar 

  • Ribeyre C, Zellweger R, Chauvin M, Bec N, Larroque C, Lopes M, Constantinou A (2016) Nascent DNA proteomics reveals a chromatin remodeler required for topoisomerase I loading at replication forks. Cell Rep 15:300–309

    Article  CAS  PubMed  Google Scholar 

  • Rose KM, Szopa J, Han FS, Cheng YC, Richter A, Scheer U (1988) Association of DNA topoisomerase I and RNA polymerase I: a possible role for topoisomerase I in ribosomal gene transcription. Chromosoma 96:411–416

    Article  CAS  PubMed  Google Scholar 

  • Roussel P, Andre C, Masson C, Geraud G, Hernandez-Verdun D (1993) Localization of the RNA polymerase I transcription factor hUBF during the cell cycle. J Cell Sci 104(Pt 2):327–337

    CAS  PubMed  Google Scholar 

  • Rubio ED, Reiss DJ, Welcsh PL, Disteche CM, Filippova GN, Baliga NS, Aebersold R, Ranish JA, Krumm A (2008) CTCF physically links cohesin to chromatin. Proc Natl Acad Sci U S A 105:8309–8314

    Article  PubMed  PubMed Central  Google Scholar 

  • Russell J, Zomerdijk JC (2005) RNA-polymerase-I-directed rDNA transcription, life and works. Trends Biochem Sci 30:87–96

    Article  CAS  PubMed  Google Scholar 

  • Russo A, Russo G (2017) Ribosomal proteins control or bypass p53 during nucleolar stress. Int J Mol Sci 18:140

    Article  CAS  PubMed Central  Google Scholar 

  • Sadoni N, Langer S, Fauth C, Bernardi G, Cremer T, Turner BM, Zink D (1999) Nuclear organization of mammalian genomes. Polar chromosome territories build up functionally distinct higher order compartments. J Cell Biol 146:1211–1226

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Salim D, Bradford WD, Freeland A, Cady G, Wang J, Pruitt SC, Gerton JL (2017) DNA replication stress restricts ribosomal DNA copy number. PLoS Genet 13:e1007006

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sanborn AL, Rao SS, Huang SC, Durand NC, Huntley MH, Jewett AI, Bochkov ID, Chinnappan D, Cutkosky A, Li J, Geeting KP, Gnirke A, Melnikov A, McKenna D, Stamenova EK, Lander ES, Aiden EL (2015) Chromatin extrusion explains key features of loop and domain formation in wild-type and engineered genomes. Proc Natl Acad Sci U S A 112:E6456–E6465

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sanij E, Poortinga G, Sharkey K, Hung S, Holloway TP, Quin J, Robb E, Wong LH, Thomas WG, Stefanovsky V, Moss T, Rothblum L, Hannan KM, McArthur GA, Pearson RB, Hannan RD (2008) UBF levels determine the number of active ribosomal RNA genes in mammals. J Cell Biol 183:1259–1274

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Santoro R, Schmitz KM, Sandoval J, Grummt I (2010) Intergenic transcripts originating from a subclass of ribosomal DNA repeats silence ribosomal RNA genes in trans. EMBO Rep 11:52–58

    Article  CAS  PubMed  Google Scholar 

  • Scheer U (1978) Changes of nucleosome frequency in nucleolar and non-nucleolar chromatin as a function of transcription: an electron microscopic study. Cell 13:535–549

    Article  CAS  PubMed  Google Scholar 

  • Scheer U (1987) Contributions of electron microscopic spreading preparations (“Miller spreads”) to the analysis of chromosome structure. Results Probl Cell Differ 14:147–171

    Article  CAS  PubMed  Google Scholar 

  • Shav-Tal Y, Blechman J, Darzacq X, Montagna C, Dye BT, Patton JG, Singer RH, Zipori D (2005) Dynamic sorting of nuclear components into distinct nucleolar caps during transcriptional inhibition. Mol Biol Cell 16:2395–2413

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Shin Y, Brangwynne CP (2017) Liquid phase condensation in cell physiology and disease. Science 357:eaaf4382

    Article  CAS  PubMed  Google Scholar 

  • Shiue CN, Berkson RG, Wright AP (2009) c-Myc induces changes in higher order rDNA structure on stimulation of quiescent cells. Oncogene 28:1833–1842

    Article  CAS  PubMed  Google Scholar 

  • Sollner-Webb B, McKnight SL (1982) Accurate transcription of cloned Xenopus rRNA genes by RNA polymerase I: demonstration by S1 nuclease mapping. Nucleic Acids Res 10:3391–3405

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Stahl A, Hartung M, Vagner-Capodano AM, Fouet C (1976) Chromosomal constitution of nucleolus-associated chromatin in man. Hum Genet 35:27–34

    Article  CAS  PubMed  Google Scholar 

  • Stefanovsky VY, Bazett-Jones DP, Pelletier G, Moss T (1996) The DNA supercoiling architecture induced by the transcription factor xUBF requires three of its five HMG-boxes. Nucleic Acids Res 24:3208–3215

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Stefanovsky VY, Pelletier G, Bazett-Jones DP, Crane-Robinson C, Moss T (2001) DNA looping in the RNA polymerase I enhancesome is the result of non-cooperative in-phase bending by two UBF molecules. Nucleic Acids Res 29:3241–3247

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Strunnikov A (2009) Cdc14p regulates condensin binding to rDNA. Cell Cycle 8:1114

    Article  PubMed  Google Scholar 

  • Sullivan M, Higuchi T, Katis VL, Uhlmann F (2004) Cdc14 phosphatase induces rDNA condensation and resolves cohesin-independent cohesion during budding yeast anaphase. Cell 117:471–482

    Article  CAS  PubMed  Google Scholar 

  • Terakawa T, Bisht S, Eeftens JM, Dekker C, Haering CH, Greene EC (2017) The condensin complex is a mechanochemical motor that translocates along DNA. Science 358:672–676

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Thomson E, Ferreira-Cerca S, Hurt E (2013) Eukaryotic ribosome biogenesis at a glance. J Cell Sci 126:4815–4821

    Article  CAS  PubMed  Google Scholar 

  • Tiku V, Jain C, Raz Y, Nakamura S, Heestand B, Liu W, Spath M, Suchiman HED, Muller RU, Slagboom PE, Partridge L, Antebi A (2017) Small nucleoli are a cellular hallmark of longevity. Nat Commun 8:16083

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Torres-Rosell J, Machin F, Jarmuz A, Aragon L (2004) Nucleolar segregation lags behind the rest of the genome and requires Cdc14p activation by the FEAR network. Cell Cycle 3:496–502

    Article  CAS  PubMed  Google Scholar 

  • Tsang CK, Li H, Zheng XS (2007a) Nutrient starvation promotes condensin loading to maintain rDNA stability. EMBO J 26:448–458

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Tsang CK, Wei Y, Zheng XF (2007b) Compacting DNA during the interphase: condensin maintains rDNA integrity. Cell Cycle 6:2213–2218

    Article  CAS  PubMed  Google Scholar 

  • Tuduri S, Crabbe L, Conti C, Tourriere H, Holtgreve-Grez H, Jauch A, Pantesco V, De Vos J, Thomas A, Theillet C, Pommier Y, Tazi J, Coquelle A, Pasero P (2009) Topoisomerase I suppresses genomic instability by preventing interference between replication and transcription. Nat Cell Biol 11:1315–1324

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Udugama M, Sanij E, Voon HPJ, Son J, Hii L, Henson JD, Chan FL, Chang FTM, Liu Y, Pearson RB, Kalitsis P, Mann JR, Collas P, Hannan RD, Wong LH (2018) Ribosomal DNA copy loss and repeat instability in ATRX-mutated cancers. Proc Natl Acad Sci U S A 115:4737–4742

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Uuskula-Reimand L, Hou H, Samavarchi-Tehrani P, Rudan MV, Liang M, Medina-Rivera A, Mohammed H, Schmidt D, Schwalie P, Young EJ, Reimand J, Hadjur S, Gingras AC, Wilson MD (2016) Topoisomerase II beta interacts with cohesin and CTCF at topological domain borders. Genome Biol 17:182

    PubMed  PubMed Central  Google Scholar 

  • van de Nobelen S, Rosa-Garrido M, Leers J, Heath H, Soochit W, Joosen L, Jonkers I, Demmers J, van der Reijden M, Torrano V, Grosveld F, Delgado MD, Renkawitz R, Galjart N, Sleutels F (2010) CTCF regulates the local epigenetic state of ribosomal DNA repeats. Epigenetics Chromatin 3:19

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • van Koningsbruggen S, Gierlinski M, Schofield P, Martin D, Barton GJ, Ariyurek Y, den Dunnen JT, Lamond AI (2010) High-resolution whole-genome sequencing reveals that specific chromatin domains from most human chromosomes associate with nucleoli. Mol Biol Cell 21:3735–3748

    Article  PubMed  PubMed Central  Google Scholar 

  • van Sluis M, McStay B (2015) A localized nucleolar DNA damage response facilitates recruitment of the homology-directed repair machinery independent of cell cycle stage. Genes Dev 29:1151–1163

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • van Sluis M, McStay B (2017) Nucleolar reorganization in response to rDNA damage. Curr Opin Cell Biol 46:81–86

    Article  CAS  PubMed  Google Scholar 

  • Viny AD, Ott CJ, Spitzer B, Rivas M, Meydan C, Papalexi E, Yelin D, Shank K, Reyes J, Chiu A, Romin Y, Boyko V, Thota S, Maciejewski JP, Melnick A, Bradner JE, Levine RL (2015) Dose-dependent role of the cohesin complex in normal and malignant hematopoiesis. J Exp Med 212:1819–1832

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Walther N, Hossain MJ, Politi AZ, Koch B, Kueblbeck M, Odegard-Fougner O, Lampe M, Ellenberg J (2018) A quantitative map of human condensins provides new insights into mitotic chromosome architecture. J Cell Biol 217:2309–2328

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wang JC (2002) Cellular roles of DNA topoisomerases: a molecular perspective. Nat Rev Mol Cell Biol. 3:430–440

    Article  CAS  PubMed  Google Scholar 

  • Wang M, Lemos B (2017) Ribosomal DNA copy number amplification and loss in human cancers is linked to tumor genetic context, nucleolus activity, and proliferation. PLoS Genet 13:e1006994

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wang BD, Eyre D, Basrai M, Lichten M, Strunnikov A (2005) Condensin binding at distinct and specific chromosomal sites in the Saccharomyces cerevisiae genome. Mol Cell Biol 25:7216–7225

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Warmerdam DO, van den Berg J, Medema RH (2016) Breaks in the 45S rDNA lead to recombination-mediated loss of repeats. Cell Rep 14:2519–2527

    Article  CAS  PubMed  Google Scholar 

  • Warner JR, McIntosh KB (2009) How common are extraribosomal functions of ribosomal proteins? Mol Cell 34:3–11

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Williams MA, Trendelenburg MF, Franke WW (1981) Patterns of transcriptional activity of nucleolar genes during progesterone-induced maturation of oocytes of Xenopus laevis. Differentiation 20:36–44

    Article  CAS  PubMed  Google Scholar 

  • Wong LH, Brettingham-Moore KH, Chan L, Quach JM, Anderson MA, Northrop EL, Hannan R, Saffery R, Shaw ML, Williams E, Choo KH (2007) Centromere RNA is a key component for the assembly of nucleoproteins at the nucleolus and centromere. Genome Res 17:1146–1160

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Xu B, Li H, Perry JM, Singh VP, Unruh J, Yu Z, Zakari M, McDowell W, Li L, Gerton JL (2017) Ribosomal DNA copy number loss and sequence variation in cancer. PLoS Genet 13:e1006771

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Yu F, Shen X, Fan L, Yu Z (2015) Analysis of histone modifications at human ribosomal DNA in liver cancer cell. Sci Rep 5:18100

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Yusufzai TM, Tagami H, Nakatani Y, Felsenfeld G (2004) CTCF tethers an insulator to subnuclear sites, suggesting shared insulator mechanisms across species. Mol Cell 13:291–298

    Article  CAS  PubMed  Google Scholar 

  • Zakari M, Yuen K, Gerton JL (2015) Etiology and pathogenesis of the cohesinopathies. Wiley Interdiscip Rev Dev Biol 4:489–504

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zentner GE, Saiakhova A, Manaenkov P, Adams MD, Scacheri PC (2011) Integrative genomic analysis of human ribosomal DNA. Nucleic Acids Res 39:4949–4960

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zhang Y, Lu H (2009) Signaling to p53: ribosomal proteins find their way. Cancer Cell 16:369–377

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zhang H, Wang JC, Liu LF (1988) Involvement of DNA topoisomerase I in transcription of human ribosomal RNA genes. Proc Natl Acad Sci U S A 85:1060–1064

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zhdanova NS (1972) Acrocentric chromosome associations in human lymphocytes. Tsitologiia 14:1098–1205

    CAS  PubMed  Google Scholar 

Download references

Funding

This work was supported by the Stowers Institute for Medical Research.

Author information

Authors and Affiliations

Authors

Contributions

TP and JG both wrote and edited the manuscript.

Corresponding author

Correspondence to Tamara A. Potapova.

Additional information

Responsible editor: Beth A Sullivan

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Potapova, T.A., Gerton, J.L. Ribosomal DNA and the nucleolus in the context of genome organization. Chromosome Res 27, 109–127 (2019). https://doi.org/10.1007/s10577-018-9600-5

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10577-018-9600-5

Keywords

Navigation