Skip to main content
Log in

The peculiar genetics of the ribosomal DNA blurs the boundaries of transgenerational epigenetic inheritance

  • Review
  • Published:
Chromosome Research Aims and scope Submit manuscript

Abstract

Our goal is to draw a line—hypothetical in its totality but experimentally supported at each individual step—connecting the ribosomal DNA and the phenomenon of transgenerational epigenetic inheritance of induced phenotypes. The reasonableness of this hypothesis is offset by its implication, that many (or most) (or all) of the cases of induced-and-inherited phenotypes that are seen to persist for generations are instead unmapped induced polymorphisms in the ribosomal DNA, and thus are the consequence of the peculiar and enduringly fascinating genetics of the highly transcribed repeat DNA structure at that locus.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2

Similar content being viewed by others

Abbreviations

BLM:

Bloom syndrome protein

CTCF:

CCCTC-binding factor

GWAS:

Genome-wide association study

IR:

Inverted repeat

LTR:

Long terminal repeat

QTL:

Quantitative trait locus

RT-QPCR:

Reverse transcription-quantitative polymerase chain reaction

Su(var):

Suppressor of variation

References

  • Ahmad Y, Boisvert FM, Gregor P, Cobley A, Lamond AI (2009) NOPdb: nucleolar proteome database--2008 update. Nucleic Acids Res 37:D181–D184

    Article  CAS  PubMed  Google Scholar 

  • Aldrich JC, Maggert KA (2014) Simple quantitative PCR approach to reveal naturally occurring and mutation-induced repetitive sequence variation on the Drosophila Y chromosome. PLoS One 9:e109906

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Aldrich JC, Maggert KA (2015) Transgenerational inheritance of diet-induced genome rearrangements in Drosophila. PLoS Genet 11:e1005148

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Andersen JS, Lam YW, Leung AK, Ong SE, Lyon CE et al (2005) Nucleolar proteome dynamics. Nature 433:77–83

    Article  CAS  PubMed  Google Scholar 

  • Anway MD, Cupp AS, Uzumcu M, Skinner MK (2005) Epigenetic transgenerational actions of endocrine disruptors and male fertility. Science 308:1466–1469

    Article  CAS  PubMed  Google Scholar 

  • Ashburner M, Golic KG, Hawley RS (2005) Drosophila: a laboratory handbook. Cold Spring Harbor Laboratory Press, Cold Spring Harbor

    Google Scholar 

  • Averbeck KT, Eickbush TH (2005) Monitoring the mode and tempo of concerted evolution in the Drosophila melanogaster rDNA locus. Genetics 171:1837–1846

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Beiko NN, Terekhov SM, Shubaeva NO, Simirnova TD, Ivanova SM et al (2005) Early and late responses to oxidative stress in human dermal fibroblasts of healthy donors and rheumatoid arthritis patients. Relationship between the cell death rate and the genomic dosage of active ribosomal genes. Mol Biol (Mosk) 39:264–275

    CAS  Google Scholar 

  • Berger SL, Kouzarides T, Shiekhattar R, Shilatifard A (2009) An operational definition of epigenetics. Genes Dev 23:781–783

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bianciardi A, Boschi M, Swanson EE, Belloni M, Robbins LG (2012) Ribosomal DNA organization before and after magnification in Drosophila melanogaster. Genetics 191:703–723

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Braunschweig M, Jagannathan V, Gutzwiller A, Bee G (2012) Investigations on transgenerational epigenetic response down the male line in F2 pigs. PLoS One 7:e30583

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Carone BR, Fauquier L, Habib N, Shea JM, Hart CE, Li R, Bock C, Li C, Gu H, Zamore PD, Meissner A, Weng Z, Hofmann HA, Friedman N, Rando OJ (2010) Paternally induced transgenerational environmental reprogramming of metabolic gene expression in mammals. Cell 143:1084–1096

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Chen ZJ, Comai L, Pikaard CS (1998) Gene dosage and stochastic effects determine the severity and direction of uniparental ribosomal RNA gene silencing (nucleolar dominance) in Arabidopsis allopolyploids. Proc Natl Acad Sci U S A 95:14891–14896

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Chen J, Lobb IT, Morin P, Novo SM, Simpson J, Kennerknecht K, von Kriegsheim A, Batchelor EE, Oakley F, Stark LA (2018) Identification of a novel TIF-IA-NF-kappaB nucleolar stress response pathway. Nucleic Acids Res 46:6188–6205

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Cheung SW, Sun L, Featherstone T (1990) Molecular cytogenetic evidence to characterize breakpoint regions in Robertsonian translocations. Cytogenet Cell Genet 54:97–102

    Article  CAS  PubMed  Google Scholar 

  • Cohen S, Yacobi K, Segal D (2003) Extrachromosomal circular DNA of tandemly repeated genomic sequences in Drosophila. Genome Res 13:1133–1145

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Cohen S, Agmon N, Yacobi K, Mislovati M, Segal D (2005) Evidence for rolling circle replication of tandem genes in Drosophila. Nucleic Acids Res 33:4519–4526

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Cohen S, Houben A, Segal D (2008) Extrachromosomal circular DNA derived from tandemly repeated genomic sequences in plants. Plant J 53:1027–1034

    Article  CAS  PubMed  Google Scholar 

  • Cullis CA, Cleary W (1986) Rapidly varying DNA sequences in flax. Can J Genet Cytol 28:252–259

    Article  CAS  Google Scholar 

  • Danson AF, Marzi SJ, Lowe R, Holland ML, Rakyan VK (2018) Early life diet conditions the molecular response to post-weaning protein restriction in the mouse. BMC Biol 16:51

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Daroit NB, Salgueiro AP, Maito F, Visioli F, Rados PV (2018) The use of cytopathology to identify disturbances in oral squamous cell carcinoma at early stage: a case report. Diagn Cytopathol

  • Eickbush DG, Eickbush TH (2003) Transcription of endogenous and exogenous R2 elements in the rRNA gene locus of Drosophila melanogaster. Mol Cell Biol 23:3825–3836

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Eickbush TH, Burke WD, Eickbush DG, Lathe WC 3rd (1997) Evolution of R1 and R2 in the rDNA units of the genus Drosophila. Genetica 100:49–61

    Article  CAS  PubMed  Google Scholar 

  • Eickbush DG, Ye J, Zhang X, Burke WD, Eickbush TH (2008) Epigenetic regulation of retrotransposons within the nucleolus of Drosophila. Mol Cell Biol 28:6452–6461

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Endow SA (1980) On ribosomal gene compensation in Drosophila. Cell 22:149–155

    Article  CAS  PubMed  Google Scholar 

  • Endow SA (1982) Molecular characterization of ribosomal genes on the Ybb-chromosome of Drosophila melanogaster. Genetics 102:91–99

    CAS  PubMed  PubMed Central  Google Scholar 

  • Endow SA (1983) Nucleolar dominance in polytene cells of Drosophila. Proc Natl Acad Sci U S A 80:4427–4431

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Endow SA, Komma DJ, Atwood KC (1984) Ring chromosomes and rDNA magnification in Drosophila. Genetics 108:969–983

    CAS  PubMed  PubMed Central  Google Scholar 

  • Foss EJ, Lao U, Dalrymple E, Adrianse RL, Loe T, Bedalov A (2017) SIR2 suppresses replication gaps and genome instability by balancing replication between repetitive and unique sequences. Proc Natl Acad Sci U S A 114:552–557

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Gibbons JG, Branco AT, Godinho SA, Yu S, Lemos B (2015) Concerted copy number variation balances ribosomal DNA dosage in human and mouse genomes. Proc Natl Acad Sci U S A 112:2485–2490

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Greer EL, Maures TJ, Ucar D, Hauswirth AG, Mancini E, Lim JP, Benayoun BA, Shi Y, Brunet A (2011) Transgenerational epigenetic inheritance of longevity in Caenorhabditis elegans. Nature 479:365–371

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Greil F, Ahmad K (2012) Nucleolar dominance of the Y chromosome in Drosophila melanogaster. Genetics 191:1119–1128

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Grierson PM, Lillard K, Behbehani GK, Combs KA, Bhattacharyya S, Acharya S, Groden J (2012) BLM helicase facilitates RNA polymerase I-mediated ribosomal RNA transcription. Hum Mol Genet 21:1172–1183

    Article  CAS  PubMed  Google Scholar 

  • Grimaldi G, Di Nocera PP (1988) Multiple repeated units in Drosophila melanogaster ribosomal DNA spacer stimulate rRNA precursor transcription. Proc Natl Acad Sci U S A 85:5502–5506

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Grummt I, Langst G (2013) Epigenetic control of RNA polymerase I transcription in mammalian cells. Biochim Biophys Acta 1829:393–404

    Article  CAS  PubMed  Google Scholar 

  • Guerrero PA, Maggert KA (2011) The CCCTC-binding factor (CTCF) of Drosophila contributes to the regulation of the ribosomal DNA and nucleolar stability. PLoS One 6:e16401

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Guetg C, Lienemann P, Sirri V, Grummt I, Hernandez-Verdun D, Hottiger MO, Fussenegger M, Santoro R (2010) The NoRC complex mediates the heterochromatin formation and stability of silent rRNA genes and centromeric repeats. EMBO J 29:2135–2146

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hawley RS, Marcus CH (1989) Recombinational controls of rDNA redundancy in Drosophila. Annu Rev Genet 23:87–120

    Article  CAS  PubMed  Google Scholar 

  • Hawley RS, Tartof KD (1985) A two-stage model for the control of rDNA magnification. Genetics 109:691–700

    CAS  PubMed  PubMed Central  Google Scholar 

  • Hayward DC, Glover DM (1988) Analysis of the Drosophila rDNA promoter by transient expression. Nucleic Acids Res 16:4253–4268

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Heard E, Martienssen RA (2014) Transgenerational epigenetic inheritance: myths and mechanisms. Cell 157:95–109

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Holland ML, Lowe R, Caton PW, Gemma C, Carbajosa G, Danson AF, Carpenter AAM, Loche E, Ozanne SE, Rakyan VK (2016) Early-life nutrition modulates the epigenetic state of specific rDNA genetic variants in mice. In: Science, vol 353, pp 495–498

    Google Scholar 

  • Hurley JE, Pathak S (1977) Elimination of nucleolus organizers in a case of 13/14 Robertsonian translocation. Hum Genet 35:169–173

    Article  CAS  PubMed  Google Scholar 

  • Ianni A, Hoelper S, Krueger M, Braun T, Bober E (2017) Sirt7 stabilizes rDNA heterochromatin through recruitment of DNMT1 and Sirt1. Biochem Biophys Res Commun 492:434–440

    Article  CAS  PubMed  Google Scholar 

  • Jesse S, Bayer H, Alupei MC, Zugel M, Mulaw M et al (2017) Ribosomal transcription is regulated by PGC-1alpha and disturbed in Huntington’s disease. Sci Rep 7:8513

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Killen MW, Stults DM, Wilson WA, Pierce AJ (2012) Escherichia coli RecG functionally suppresses human Bloom syndrome phenotypes. BMC Mol Biol 13:33

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kim JH, Dilthey AT, Nagaraja R, Lee HS, Koren S, Dudekula D, Wood III WH, Piao Y, Ogurtsov AY, Utani K, Noskov VN, Shabalina SA, Schlessinger D, Phillippy AM, Larionov V (2018) Variation in human chromosome 21 ribosomal RNA genes characterized by TAR cloning and long-read sequencing. Nucleic Acids Res 46:6712–6725

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Klosin A, Casas E, Hidalgo-Carcedo C, Vavouri T, Lehner B (2017) Transgenerational transmission of environmental information in C. elegans. Science 356:320–323

    Article  CAS  PubMed  Google Scholar 

  • Kobayashi T (2008) A new role of the rDNA and nucleolus in the nucleus--rDNA instability maintains genome integrity. Bioessays 30:267–272

    Article  CAS  PubMed  Google Scholar 

  • Kobayashi T (2014) Ribosomal RNA gene repeats, their stability and cellular senescence. Proceedings of the Japan Academy, Series B 90:119–129

    Article  CAS  Google Scholar 

  • Kobayashi T, Heck DJ, Nomura M, Horiuchi T (1998) Expansion and contraction of ribosomal DNA repeats in Saccharomyces cerevisiae: requirement of replication fork blocking (Fob1) protein and the role of RNA polymerase I. Genes Dev 12:3821–3830

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kobayashi T, Nomura M, Horiuchi T (2001) Identification of DNA cis elements essential for expansion of ribosomal DNA repeats in Saccharomyces cerevisiae. Mol Cell Biol 21:136–147

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kojima KK, Fujiwara H (2003) Evolution of target specificity in R1 clade non-LTR retrotransposons. Mol Biol Evol 20:351–361

    Article  CAS  PubMed  Google Scholar 

  • Komma DJ, Endow SA (1987) Incomplete Y chromosomes promote magnification in male and female Drosophila. Proc Natl Acad Sci U S A 84:2382–2386

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kuhn A, Deppert U, Grummt I (1990) A 140-base-pair repetitive sequence element in the mouse rRNA gene spacer enhances transcription by RNA polymerase I in a cell-free system. Proc Natl Acad Sci U S A 87:7527–7531

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kwan EX, Foss EJ, Tsuchiyama S, Alvino GM, Kruglyak L, Kaeberlein M, Raghuraman MK, Brewer BJ, Kennedy BK, Bedalov A (2013) A natural polymorphism in rDNA replication origins links origin activation with calorie restriction and lifespan. PLoS Genet 9:e1003329

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kwan EX, Wang XS, Amemiya HM, Brewer BJ, Raghuraman MK (2016) rDNA copy number variants are frequent passenger mutations in Saccharomyces cerevisiae deletion collections and de novo transformants. G3 (Bethesda) 6:2829–2838

    Article  CAS  Google Scholar 

  • Larson K, Yan SJ, Tsurumi A, Liu J, Zhou J, Gaur K, Guo D, Eickbush TH, Li WX (2012) Heterochromatin formation promotes longevity and represses ribosomal RNA synthesis. PLoS Genet 8:e1002473

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lewis EB (1952) The pseudoallelism of white and apricot in Drosophila melanogaster. Proc Natl Acad Sci U S A 38:953–961

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lindstrom MS, Jurada D, Bursac S, Orsolic I, Bartek J et al (2018) Nucleolus as an emerging hub in maintenance of genome stability and cancer pathogenesis. Oncogene 37:2351–2366

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Long EO, Dawid IB (1980) Repeated genes in eukaryotes. Annu Rev Biochem 49:727–764

    Article  CAS  PubMed  Google Scholar 

  • Lu KL, Nelson JO, Watase GJ, Warsinger-Pepe N, Yamashita YM (2018) Transgenerational dynamics of rDNA copy number in Drosophila male germline stem cells. Elife 7

  • Lyckegaard EM, Clark AG (1989) Ribosomal DNA and stellate gene copy number variation on the Y chromosome of Drosophila melanogaster. Proc Natl Acad Sci U S A 86:1944–1948

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Maina MB, Bailey LJ, Wagih S, Biasetti L, Pollack SJ, Quinn JP, Thorpe JR, Doherty AJ, Serpell LC (2018) The involvement of tau in nucleolar transcription and the stress response. Acta Neuropathol Commun 6:70

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Malinovskaya EM, Ershova ES, Golimbet VE, Porokhovnik LN, Lyapunova NA, Kutsev SI, Veiko NN, Kostyuk SV (2018) Copy number of human ribosomal genes with aging: unchanged mean, but narrowed range and decreased variance in elderly group. Front Genet 9:306

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Manikkam M, Guerrero-Bosagna C, Tracey R, Haque MM, Skinner MK (2012) Transgenerational actions of environmental compounds on reproductive disease and identification of epigenetic biomarkers of ancestral exposures. PLoS One 7:e31901

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Mather K (1944) The genetical activity of heterochromatin. Proc R Soc B 132:308–332

    Article  Google Scholar 

  • McStay B, Grummt I (2008) The epigenetics of rRNA genes: from molecular to chromosome biology. Annu Rev Cell Dev Biol 24:131–157

    Article  CAS  PubMed  Google Scholar 

  • Michel AH, Kornmann B, Dubrana K, Shore D (2005) Spontaneous rDNA copy number variation modulates Sir2 levels and epigenetic gene silencing. Genes Dev 19:1199–1210

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Montacie C, Durut N, Opsomer A, Palm D, Comella P et al (2017) Nucleolar proteome analysis and proteasomal activity assays reveal a link between nucleolus and 26S proteasome in a. thaliana. Front Plant Sci 8:1815

    Article  PubMed  PubMed Central  Google Scholar 

  • Muller HJ (1932) Further studies on the nature and causes of gene mutations. Proceedings of the 6th International Congress of Genetics: 213–255

  • Nunez Villacis L, Wong MS, Ferguson LL, Hein N, George AJ et al (2018) New roles for the nucleolus in health and disease. Bioessays 40:e1700233

    Article  PubMed  Google Scholar 

  • Ost A, Lempradl A, Casas E, Weigert M, Tiko T et al (2014) Paternal diet defines offspring chromatin state and intergenerational obesity. Cell 159:1352–1364

    Article  CAS  PubMed  Google Scholar 

  • Padmanabhan N, Jia D, Geary-Joo C, Wu X, Ferguson-Smith AC, Fung E, Bieda MC, Snyder FF, Gravel RA, Cross JC, Watson ED (2013) Mutation in folate metabolism causes epigenetic instability and transgenerational effects on development. Cell 155:81–93

    Article  CAS  PubMed  Google Scholar 

  • Paredes S, Maggert KA (2009a) Expression of I-CreI endonuclease generates deletions within the rDNA of Drosophila. Genetics 181:1661–1671

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Paredes S, Maggert KA (2009b) Ribosomal DNA contributes to global chromatin regulation. Proc Natl Acad Sci U S A 106:17829–17834

    Article  PubMed  PubMed Central  Google Scholar 

  • Paredes S, Branco AT, Hartl DL, Maggert KA, Lemos B (2011) Ribosomal DNA deletions modulate genome-wide gene expression: “rDNA-sensitive” genes and natural variation. PLoS Genet 7:e1001376

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Paredes S, Angulo-Ibanez M, Tasselli L, Carlson SM, Zheng W, Li TM, Chua KF (2018) The epigenetic regulator SIRT7 guards against mammalian cellular senescence induced by ribosomal DNA instability. J Biol Chem 293:11242–11250

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Parks MM, Kurylo CM, Dass RA, Bojmar L, Lyden D, Vincent CT, Blanchard SC (2018) Variant ribosomal RNA alleles are conserved and exhibit tissue-specific expression. Sci Adv 4:eaao0665

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Pendle AF, Clark GP, Boon R, Lewandowska D, Lam YW, Andersen J, Mann M, Lamond AI, Brown JWS, Shaw PJ (2005) Proteomic analysis of the Arabidopsis nucleolus suggests novel nucleolar functions. Mol Biol Cell 16:260–269

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Peng JC, Karpen GH (2007) H3K9 methylation and RNA interference regulate nucleolar organization and repeated DNA stability. Nat Cell Biol 9:25–35

    Article  CAS  PubMed  Google Scholar 

  • Peng JC, Karpen GH (2008) Epigenetic regulation of heterochromatic DNA stability. Curr Opin Genet Dev 18:204–211

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Pineiro D, Stoneley M, Ramakrishna M, Alexandrova J, Dezi V et al. (2018) Identification of the RNA polymerase I-RNA interactome. Nucleic Acids Res

  • Pontes O, Lawrence RJ, Neves N, Silva M, Lee JH, Chen ZJ, Viegas W, Pikaard CS (2003) Natural variation in nucleolar dominance reveals the relationship between nucleolus organizer chromatin topology and rRNA gene transcription in Arabidopsis. Proc Natl Acad Sci U S A 100:11418–11423

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Preuss S, Pikaard CS (2007) rRNA gene silencing and nucleolar dominance: insights into a chromosome-scale epigenetic on/off switch. Biochim Biophys Acta 1769:383–392

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Prokopowich CD, Gregory TR, Crease TJ (2003) The correlation between rDNA copy number and genome size in eukaryotes. Genome 46:48–50

    Article  CAS  PubMed  Google Scholar 

  • Rasooly RS, Robbins LG (1991) Rex and a suppressor of Rex are repeated neomorphic loci in the Drosophila melanogaster ribosomal DNA. Genetics 129:119–132

    CAS  PubMed  PubMed Central  Google Scholar 

  • Remely M, Stefanska B, Lovrecic L, Magnet U, Haslberger AG (2015) Nutriepigenomics: the role of nutrition in epigenetic control of human diseases. Curr Opin Clin Nutr Metab Care 18:328–333

    Article  CAS  PubMed  Google Scholar 

  • Ritossa F (1973) Crossing-over between X AND Y chromosomes during ribosomal DNA magnification in Drosophila melanogaster. Proc Natl Acad Sci U S A 70:1950–1954

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ritossa FM, Atwood KC, Spiegelman S (1966) A molecular explanation of the bobbed mutants of Drosophila as partial deficiencies of “ribosomal” DNA. Genetics 54:819–834

    CAS  PubMed  PubMed Central  Google Scholar 

  • Roche B, Arcangioli B, Martienssen R (2017) New roles for Dicer in the nucleolus and its relevance to cancer. Cell Cycle 16:1643–1653

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Salim D, Bradford WD, Freeland A, Cady G, Wang J, Pruitt SC, Gerton JL (2017) DNA replication stress restricts ribosomal DNA copy number. PLoS Genet 13:e1007006

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sanchez JC, Kwan EX, Pohl TJ, Amemiya HM, Raghuraman MK, Brewer BJ (2017) Defective replication initiation results in locus specific chromosome breakage and a ribosomal RNA deficiency in yeast. PLoS Genet 13:e1007041

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sanij E, Poortinga G, Sharkey K, Hung S, Holloway TP, Quin J, Robb E, Wong LH, Thomas WG, Stefanovsky V, Moss T, Rothblum L, Hannan KM, McArthur GA, Pearson RB, Hannan RD (2008) UBF levels determine the number of active ribosomal RNA genes in mammals. J Cell Biol 183:1259–1274

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Schawalder J, Paric E, Neff NF (2003) Telomere and ribosomal DNA repeats are chromosomal targets of the bloom syndrome DNA helicase. BMC Cell Biol 4:15

    Article  PubMed  PubMed Central  Google Scholar 

  • Schneeberger RG, Cullis CA (1991) Specific DNA alterations associated with the environmental induction of heritable changes in flax. Genetics 128:619–630

    CAS  PubMed  PubMed Central  Google Scholar 

  • Seong KH, Li D, Shimizu H, Nakamura R, Ishii S (2011) Inheritance of stress-induced, ATF-2-dependent epigenetic change. Cell 145:1049–1061

    Article  CAS  PubMed  Google Scholar 

  • Sinclair DA, Guarente L (1997) Extrachromosomal rDNA circles--a cause of aging in yeast. Cell 91:1033–1042

    Article  CAS  PubMed  Google Scholar 

  • Small C, Ramroop J, Otazo M, Huang LH, Saleque S, Govind S (2014) An unexpected link between notch signaling and ROS in restricting the differentiation of hematopoietic progenitors in Drosophila. Genetics 197:471–483

    Article  CAS  PubMed  Google Scholar 

  • Specchia V, Piacentini L, Tritto P, Fanti L, D'Alessandro R et al (2010) Hsp90 prevents phenotypic variation by suppressing the mutagenic activity of transposons. Nature 463:662–665

    Article  CAS  PubMed  Google Scholar 

  • Spofford JB (1976) Position-effect variegation in Drosophila, pp. 955–1019 in The genetics and biology of Drosophila, edited by M. Ashburner and E. Novitski. Academic Press

  • Spofford JB, DeSalle R (1991) Nucleolus organizer-suppressed position-effect variegation in Drosophila melanogaster. Genet Res 57:245–255

    Article  CAS  PubMed  Google Scholar 

  • Sriskanthadevan-Pirahas S, Lee J, Grewal SS (2018) The EGF/Ras pathway controls growth in Drosophila via ribosomal RNA synthesis. Dev Biol 439:19–29

    Article  CAS  PubMed  Google Scholar 

  • Stults DM, Killen MW, Pierce HH, Pierce AJ (2008) Genomic architecture and inheritance of human ribosomal RNA gene clusters. Genome Res 18:13–18

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Stults DM, Killen MW, Williamson EP, Hourigan JS, Vargas HD, Arnold SM, Moscow JA, Pierce AJ (2009) Human rRNA gene clusters are recombinational hotspots in cancer. Cancer Res 69:9096–9104

    Article  CAS  PubMed  Google Scholar 

  • Sun W, Samimi H, Gamez M, Zare H, Frost B (2018) Pathogenic tau-induced piRNA depletion promotes neuronal death through transposable element dysregulation in neurodegenerative tauopathies. Nat Neurosci 21:1038–1048

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Tartof KD (1973) Regulation of ribosomal RNA gene multiplicity in Drosophila melanogaster. Genetics 73:57–71

    CAS  PubMed  PubMed Central  Google Scholar 

  • Tartof KD (1974) Unequal mitotic sister chromatid exchange and disproportionate replication as mechanisms regulating ribosomal RNA gene redundancy. Cold Spring Harb Symp Quant Biol 38:491–500

    Article  CAS  PubMed  Google Scholar 

  • Terracol R, Prud'homme N (1981) 26S and 18S rRNA synthesis in bobbed mutants of Drosophila melanogaster. Biochimie 63:451–455

    Article  CAS  PubMed  Google Scholar 

  • Terracol R, Prud'homme N (1986) Differential elimination of rDNA genes in bobbed mutants of Drosophila melanogaster. Mol Cell Biol 6:1023–1031

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Terracol R, Iturbide Y, Prud'Homme N (1990) Partial reversion at the bobbed locus of Drosophila melanogaster. Biol Cell 68:65–71

    CAS  PubMed  Google Scholar 

  • Tiku V, Antebi A (2018) Nucleolar function in lifespan regulation. Trends Cell Biol 28:662–672

    Article  CAS  PubMed  Google Scholar 

  • Tiku V, Jain C, Raz Y, Nakamura S, Heestand B et al (2017) Small nucleoli are a cellular hallmark of longevity. Nat Commun 8:16083

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Torrano V, Navascues J, Docquier F, Zhang R, Burke LJ et al (2006) Targeting of CTCF to the nucleolus inhibits nucleolar transcription through a poly(ADP-ribosyl)ation-dependent mechanism. J Cell Sci 119:1746–1759

    Article  CAS  PubMed  Google Scholar 

  • Udugama M, Sanij E, Voon HPJ, Son J, Hii L, Henson JD, Chan FL, Chang FTM, Liu Y, Pearson RB, Kalitsis P, Mann JR, Collas P, Hannan RD, Wong LH (2018) Ribosomal DNA copy loss and repeat instability in ATRX-mutated cancers. Proc Natl Acad Sci U S A 115:4737–4742

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • van de Nobelen S, Rosa-Garrido M, Leers J, Heath H, Soochit W, Joosen L, Jonkers I, Demmers J, van der Reijden M, Torrano V, Grosveld F, Delgado MD, Renkawitz R, Galjart N, Sleutels F (2010) CTCF regulates the local epigenetic state of ribosomal DNA repeats. Epigenetics Chromatin 3:19

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Waddington CH (1957) The strategy of the genes

  • Waddington CH (1959) Canalization of development and genetic assimilation of acquired characters. Nature 183:1654–1655

    Article  CAS  PubMed  Google Scholar 

  • Wang M, Lemos B (2017) Ribosomal DNA copy number amplification and loss in human cancers is linked to tumor genetic context, nucleolus activity, and proliferation. PLoS Genet 13:e1006994

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wang W, Wan T, Becher H, Kuderova A, Leitch IJ, Garcia S, Leitch AR, Kovařík A (2018) Remarkable variation of ribosomal DNA organization and copy number in gnetophytes, a distinct lineage of gymnosperms. Ann Bot

  • Warmerdam DO, van den Berg J, Medema RH (2016) Breaks in the 45S rDNA Lead to recombination-mediated loss of repeats. Cell Rep 14:2519–2527

    Article  CAS  PubMed  Google Scholar 

  • Xu B, Li H, Perry JM, Singh VP, Unruh J, Yu Z, Zakari M, McDowell W, Li L, Gerton JL (2017) Ribosomal DNA copy number loss and sequence variation in cancer. PLoS Genet 13:e1006771

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Youngson NA, Whitelaw E (2008) Transgenerational epigenetic effects. Annu Rev Genomics Hum Genet 9:233–257

    Article  CAS  PubMed  Google Scholar 

  • Zhang Q, Shalaby NA, Buszczak M (2014) Changes in rRNA transcription influence proliferation and cell fate within a stem cell lineage. Science 343:298–301

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zhou J, Sackton TB, Martinsen L, Lemos B, Eickbush TH, Hartl DL (2012) Y chromosome mediates ribosomal DNA silencing and modulates the chromatin state in Drosophila. Proc Natl Acad Sci U S A. https://doi.org/10.1073/pnas.1207367109

Download references

Acknowledgements

We gratefully acknowledge Drs. Pamela Geyer, C.-Ting Wu, and Harmit Malik for the encouragement.

Author contribution statement

FB and KAM wrote, read, and approved the manuscript.

Funding

The work was funded by an NIH Director’s Transformative Research Award (1R01GM123640), and support was provided by the UA. Cancer Center Core Grant (P30CA023074).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Keith A. Maggert.

Additional information

Responsible Editors: Jennifer Gerton and Lev Porokhovnik

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bughio, F., Maggert, K.A. The peculiar genetics of the ribosomal DNA blurs the boundaries of transgenerational epigenetic inheritance. Chromosome Res 27, 19–30 (2019). https://doi.org/10.1007/s10577-018-9591-2

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10577-018-9591-2

Keywords

Navigation