Skip to main content

Advertisement

Log in

Genetic Diversity and Population Structure Analysis of Three Deep-Sea Amphipod Species from Geographically Isolated Hadal Trenches in the Pacific Ocean

  • Original Article
  • Published:
Biochemical Genetics Aims and scope Submit manuscript

Abstract

Amphipods of the superfamily Lysianassoidea that inhabit the hadal zone ( > 6000 m) have large bathymetric ranges and play a key role in deep ocean ecosystems. The endemism of these amphipod species makes them a good model for investigating potent natural selection and restricted dispersal in deep ocean trenches. Here, we describe genetic diversity and intraspecific population differentiation among three amphipod species from four Pacific trenches based on a mtDNA concatenated dataset (CO Ι and 16S rRNA genes) from 150 amphipod individuals. All amphipod populations had low genetic diversity, as indicated by haplotype and nucleotide diversity values. Population geographic relationship analysis of two Alicella gigantea populations revealed no genetic differentiation between these two localities (pairwise genetic differentiation coefficient = 0.00032, gene flow = 784.58), and the major variation (99.97%) was derived from variation within the populations. Historical demographic events were investigated using Tajima’s D and Fu’s F neutrality tests and analysis of mismatch distribution. Consistent results provided strong evidence to support the premise that demographic expansion occurred only for the Mariana population of Hirondellea gigas, possibly within the last 2.1–3.4 million years. These findings suggest that the formation of amphipod population structure might be the result of multiple factors including high hydrostatic pressure, food distribution, trench topographic forcing and potential ecological interactions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Avise JC, Arnold J, Ball RM, Bermingham E, Lamb T, Neigel JE, Reeb CA, Saunders NC (1987) Intraspecific phylogeography: the mitochondrial DNA bridge between population genetics and systematics. Annu Rev Ecol Evol Syst 18:489–522

    Google Scholar 

  • Billett DSM, Bett BJ, Reid WDK, Boorman B, Priede IG (2009) Long-term change in the abyssal NE Atlantic: the ‘Amperima Event’ revisited. Deep Sea Res Part II. 57:1406–1417

    Google Scholar 

  • Blankenship LE, Yayanos AA, Cadien DB, Levin LA (2006) Vertical zonation patterns of scavenging amphipods from the hadal zone of the tonga and kermadec trenches. Deep Sea Res Part I 53(1):48–61

    Google Scholar 

  • Chan JL, Li WW, Hu XX, Liu YM, Xu QH (2016) Genetic diversity and population structure analysis of qinghai-tibetan plateau schizothoracine fish (gymnocypris dobula) based on mtdna d-loop sequences. Biochem Syst Ecol 69:152–160

    CAS  Google Scholar 

  • Chung PP, Hyne RV, Mann RM, Ballard JWO (2011) Temporal and geographical genetic variation in the amphipodMelita plumulosa (Crustacea: Melitidae): Link of a localized change in haplotype frequencies to a chemical spill. Chemosphere 82:1050–1055

    CAS  PubMed  Google Scholar 

  • Cossins AR, Macdonald AG (1986) Homeoviscous adaptation under pressure 3. The fatty-acid composition of liver mitochondrial phospholipids of deep-sea fish. Biochim Biophys Acta 860:325–335

    CAS  Google Scholar 

  • Cowart D, Halanych K, Schaeffer S, Fisher C (2014) Depth-dependent geneflow in Gulf of Mexico cold seep Lamellibrachia tubeworms (Annelida, Siboglinidae). Hydrobiologia 736(1):139–154

    CAS  Google Scholar 

  • Danovaro R, Gambi C, Della Croce N (2002) Meiofauna hotspot in the Atacama Trench, eastern South Pacific Ocean. Deep Sea Res I 49(5):843–857

    CAS  Google Scholar 

  • Danovaro R, Dell’Anno A, Pusceddu A (2004) Biodiversity response to climate change in a warm deep-sea. Ecol Lett 7:821–828

    Google Scholar 

  • Eustace R, Ritchie H, Kilgallen N, Piertney SB, Jamieson AJ (2016) Morphological and ontogenetic stratification of abyssal and hadal Eurythenes gryllus sensu lato (Amphipoda: lysianassoidea) from the Peru-Chile Trench. Deep Sea Res 109:91–98

    Google Scholar 

  • Excoffier L, Lischer HEL (2010) Arlequin suite ver 3.5: a new series of programs to perform population genetics analyses under Linux and Windows. Mol Ecol Resour 10:564–567

    PubMed  Google Scholar 

  • Felsenstein J (1981) Evolutionary trees from DNA sequences: a maximum likelihood approach. J Mol Evol 17:368–376

    CAS  PubMed  Google Scholar 

  • Felsenstein J (1985) Confidence limits on phylogenies: an approach using the bootstrap. Evolution 39:783–791

    PubMed  Google Scholar 

  • France S (1993) Geographic variation among three isolated populations of the hadal amphipod Hirondellea gigas (crustacea: amphipoda: lysianassoidea). Mar Ecol Prog 92(3):277–287

    Google Scholar 

  • Fu YX (1997) Statistical tests of neutrality of mutations against population growth, hitchhiking and background selection. Genetics 147:915–925

    CAS  PubMed  PubMed Central  Google Scholar 

  • Guban P, Wennerstrom L, Elfwing T, Sundelin B, Laikre L (2015) Genetic diversity inMonoporeia affinisat polluted and reference site of the Baltic Bothnian Bay. Mar Pollut Bull 93:245–249

    CAS  PubMed  Google Scholar 

  • Harpending HC (1994) Signature of ancient population growth in a low-resolution mitochondrial DNA mismatch distribution. Hum Biol 66:591–600

    CAS  PubMed  Google Scholar 

  • Havermans C (2016) Have we so far only seen the tip of the iceberg? Exploring species diversity and distribution of the giant amphipod Eurythenes. Biodiversity 17(1–2):12–25

    Google Scholar 

  • Havermans C, Sonet G, D’Acoz C, Nagy Z, Martin P, Brix S, Held C (2013) Genetic and morphological divergences in the cosmopolitan deep-sea amphipod Eurythenes gryllus reveal a diverse abyss and a bipolar species. PLoS ONE 8(9):e74218

    CAS  PubMed  PubMed Central  Google Scholar 

  • Hessler RR, Ingram CL, Yayanod AA, Burnett BR (1978) Scavenging amphipods from the floor of the Philippine Trench. Deep-Sea Res 25:1029–1047

    Google Scholar 

  • Ichino MC, Clark MR, Drazen JC, Jamieson AJ, Jones DOB, Martin AP, Rowden AA, Shank TM, Yancey PH, Ruhl HA (2015) The distribution of benthic biomass in hadal trenches: a modelling approach to investigate the effect of vertical and lateral organic matter transport to the seafloor. Deep Sea Res Part I 3:1–49

    Google Scholar 

  • Ishizuka O, Tani K, Reagan MK, Kanayama K, Umino S, Harigane Y, Sakamoto I, Miyajima Y, Yuasa M, Dunkley DJ (2011) The timescales of subduction initiation and subsequent evolution of an oceanic island arc. Earth Planet Sci Lett 306:229–240

    CAS  Google Scholar 

  • Jamieson A (2015) The hadal zone life in the deepest oceans. Cambridge University Press, Cambridge

    Google Scholar 

  • Jamieson A, Fujii T (2011) Trench connection. Biol Lett 7:641–643

    PubMed  PubMed Central  Google Scholar 

  • Jamieson AJ, Fujii T, Solan M, Matsumoto A, Bagley PM, Priede IG (2009a) Liparid and macrouridfishes of the hadal zone: in situ observations of activity and feeding behaviour. Proc R Soc B Biol Sci 276:1037–1045

    CAS  Google Scholar 

  • Jamieson AJ, Fujii T, Solan M, Matsumoto AK, Bagley PM, Priede IG (2009b) First findings of decapod crustacea in the hadal zone. Deep Sea Res Part I 56:641–647

    Google Scholar 

  • Jamieson A, Fujii T, Mayor D, Solan M, Priede IG (2010) Hadal trenches: the ecology of the deepest places on earth. Trends Ecol Evol 25(3):190–197

    PubMed  Google Scholar 

  • Jamieson AJ, Lörz AN, Fujii T, Priede I (2012) In situ observations of trophic behaviour and locomotion of Princaxelia amphipods (Crustacea: pardaliscidae) at hadal depths in four West Pacific Trenches. J Mar Biol Assoc UK 92(1):143–150.

    Google Scholar 

  • Jensen JL, Bohonak AJ, Kelly ST (2005) Isolation by distance, web service. BMC Genet 6:13

    PubMed  PubMed Central  Google Scholar 

  • Johnson GC (1998) Deep water properties, velocities, and dynamics over ocean trenches. J Mar Res 56:239–347

    Google Scholar 

  • Kilgallen N (2015) Three new species of Hirondellea (Crustacea, Amphipoda, Hirondelleidae) from hadal depths of the Peru-Chile Trench. Mar Biol Res 11(1):34–48

    Google Scholar 

  • Knowlton N, Weigt LA (1998) New dates and new rates for divergence across the Isthmus of Panama. Proc R Soc Lond Ser. B Biol Sci 265:2257–2263

    Google Scholar 

  • Kobayashi H, Hatada Y, Tsubouchi T, Nagahama T, Takami H (2012) The hadal amphipod hirondellea gigas possessing a unique cellulase for digesting wooden debris buried in the deepest seafloor. PLoS ONE 7(8):e42727

    CAS  PubMed  PubMed Central  Google Scholar 

  • Lacey NC, Rowden AA, Clark MR, Kilgallen NM, Mayor DJ, Linley TD, Jamieson AJ (2016) Community structure and diversity of scavenging amphipods from bathyal to hadal depths in three South Pacific trenches. Deep Sea Res Part I 111:121–137

    Google Scholar 

  • Linley TD, Stewart A, McMillan P, Clark M, Gerringer ME, Drazen JC, Fujii T, Jamieson AJ (2017) Bait attendingfishes of the abyssal zone and hadal boundary: community structure, functional groups and species distribution in the Kermadec, New Hebrides and Mariana trenches. Deep Sea Res Part I 121:38–53

    Google Scholar 

  • Liu YP, Cao SX, Chen SY, Yao YG, Liu TZ (2009) Genetic diversity of Chinese domestic goat based on the mitochondrial DNA sequence variation. J Anim Breed Genet 126:80–89

    CAS  PubMed  Google Scholar 

  • Longhurst A (1995) Seasonal cycles of pelagic production and consumption. Prog Oceanogr 36:77–167

    Google Scholar 

  • Peck LS, Webb KE, Bailey DM (2004) Extreme sensitivity of biological function to temperature in Antarctic marine species. Funct Ecol 18:625–630

    Google Scholar 

  • Quattrini A, Baums I, Shank TM, Morrison CL, Cordes EE (2015) Testing the depth-differentiation hypothesis in a deepwater octocoral. Proc R Soc B 282(1807):1–9

    Google Scholar 

  • Reagan MK, McClelland WC, Girard G, Goff KR, Peate DW, Ohara Y, Stern RJ (2013) The geology of the southern Mariana fore-arc crust: implications for the scale of Eocene volcanism in the western Pacific. Earth Planet Sci Lett 380:41–51

    CAS  Google Scholar 

  • Rex M, Etter R (2010) Deep-sea biodiversity: pattern and scale. Harvard University Press, Cambridge

    Google Scholar 

  • Ribeiro J, Stern RJ, Martinez F, Ishizuka O, Merle SG, Kelley KA, Anthony EY, Ren M, Ohara Y, Reagan M, Girard G, Bloomer SH (2013) Geodynamic evolution of a forearc rift in the southernmost Mariana Arc. Isl Arc 22:453–476

    Google Scholar 

  • Ritchie H, Jamieson AJ, Piertney SB (2015) Phylogenetic relationships among hadal amphipods of the Superfamily Lysianassoidea: Implications for taxonomy and biogeography. Deep-Sea Res I 105:119–131

    CAS  Google Scholar 

  • Ritchie H, Jamieson AJ, Piertney SB (2017) Population genetic structure of two congeneric deep-sea amphipod species from geographically isolated hadal trenches in the Pacific Ocean. Deep-Sea Res I 119:50–57

    Google Scholar 

  • Rogers AR, Harpending H (1992) Population growthmakes waves in the distribution of pairwise genetic differences. Mol Biol Evol 9:552–569

    CAS  PubMed  Google Scholar 

  • Rozas J, Sanchez-Delbarrio JC, Messeguer X, Rozas R (2003) Dnasp, DNA polymorphism analyses by the coalescent and other methods. Bioinformatics 19:2496–2497

    CAS  PubMed  Google Scholar 

  • Saitou N, Nei M (1987) The neighbor-joining method: a new method for reconstructing phylogenetic trees. Mol Biol Evol 4:406–425

    CAS  PubMed  Google Scholar 

  • Stern R (2002) Subduction zones. Rev Geophys 40:1–3.

    Google Scholar 

  • Swofford DL (2003) PAUP*: phylogenetic analysis using parsimony (* and other methods), version 4.0b10. Sinauer Associates, Sunderland

  • Tajima F (1989) Statistical method for testing the neutral mutation hypothesis by DNA polymorphism. Genetics 123:585–595

    CAS  PubMed  PubMed Central  Google Scholar 

  • Tamura K, Stecher K, Peterson D, Filipski A, Kumar S (2013) MEGA6: molecular evolutionary genetics analysis version 6.0. Mol Biol Evol 30:2725–2729

    CAS  PubMed  PubMed Central  Google Scholar 

  • Thompson JD, Gibson TJ, Plewniak F, Jeanmougin F, Higgins DJ (1997) The CLUSTAL-X windows interface:flexible strategies for multiple sequence alignment aided by quality analysis tools. Nucleic acids Res 25:4876–4882

    CAS  PubMed  PubMed Central  Google Scholar 

  • Tietjen JH, Deming JW, Rowe GT, Macko S, Wilke RJ (1989) Meiobenthos of the Hatteras abyssal plain and Puerto-Rico trench–abundance, biomass and association with bacteria and particulate fluxes. Deep Sea Res Part A 36(10):1567–1577

    Google Scholar 

  • Wright S (1951) The genetical structure of populations. Ann Eugen 15:323–354.

    CAS  PubMed  Google Scholar 

  • Wright S (1978) Evolution and the genetics of populations, vol 4. University of Chicago Press, Chicago

    Google Scholar 

Download references

Acknowledgements

We would like to thank all of the people for the sample collection. This work was supported in part by the National Key R&D Program of China (Grant No. 2018YFC0310600), the National Natural Science Foundation of China (Grant No. 31572598), the National Natural Science Foundation of China (Grant No. 31772826) and the National Natural Science Foundation of China (Grant No. 31572611).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Qianghua Xu.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 22 kb)

Supplementary file2 (DOCX 15 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chan, J., Pan, B., Geng, D. et al. Genetic Diversity and Population Structure Analysis of Three Deep-Sea Amphipod Species from Geographically Isolated Hadal Trenches in the Pacific Ocean. Biochem Genet 58, 157–170 (2020). https://doi.org/10.1007/s10528-019-09935-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10528-019-09935-z

Keywords

Navigation