Skip to main content

Advertisement

Log in

QTLian breeding for climate resilience in cereals: progress and prospects

  • Review
  • Published:
Functional & Integrative Genomics Aims and scope Submit manuscript

Abstract

The ever-rising population of the twenty-first century together with the prevailing challenges, such as deteriorating quality of arable land and water, has placed a big challenge for plant breeders to satisfy human needs for food under erratic weather patterns. Rice, wheat, and maize are the major staple crops consumed globally. Drought, waterlogging, heat, salinity, and mineral toxicity are the key abiotic stresses drastically affecting crop yield. Conventional plant breeding approaches towards abiotic stress tolerance have gained success to limited extent, due to the complex (multigenic) nature of these stresses. Progress in breeding climate-resilient crop plants has gained momentum in the last decade, due to improved understanding of the physiochemical and molecular basis of various stresses. A good number of genes have been characterized for adaptation to various stresses. In the era of novel molecular markers, mapping of QTLs has emerged as viable solution for breeding crops tolerant to abiotic stresses. Therefore, molecular breeding-based development and deployment of high-yielding climate-resilient crop cultivars together with climate-smart agricultural practices can pave the path to enhanced crop yields for smallholder farmers in areas vulnerable to the climate change. Advances in fine mapping and expression studies integrated with cheaper prices offer new avenues for the plant breeders engaged in climate-resilient plant breeding, and thereby, hope persists to ensure food security in the era of climate change.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2

Similar content being viewed by others

References

  • Abhinandan K, Skori L, Stanic M, Hickerson NM, Jamshed M, Samuel MA (2018) Abiotic stress signaling in wheat—an inclusive overview of hormonal interactions during abiotic stress responses in wheat. Front Plant Sci 9

  • Ahmad P, Hashem A, Abd-Allah EF, Alqarawi AA, John R, Egamberdieva D, Gucel S (2015) Role of Trichoderma harzianum in mitigating NaCl stress in Indian mustard (Brassica juncea L.) through antioxidative defense system. Front Plant Sci 6:868

    PubMed  PubMed Central  Google Scholar 

  • Ahmed HM, Malik TA, Choudhary MA (2000) Genetic analysis of some physio-morphic traits in wheat under drought. J Agri Plant Sci 10:5–7

    Google Scholar 

  • Allam M, Revilla P, Djemel A (2016) Identification of QTLs involved in cold tolerance in sweet x field corn. Euphytica 208:353–365. https://doi.org/10.1007/s10681-015-1609-7

    Article  CAS  Google Scholar 

  • Almeida GD, Nair S, Bore´m A, Cairns J, Trachsel S, Ribaut JM (2014) Molecular mapping across three populations reveals a QTL hotspot region on chromosome 3 for secondary traits associated with drought tolerance in tropical maize. Mol Breed 34:701–715

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Almeida GD, Makumbi D, Magorokosho C (2013) QTL mapping in three tropical maize populations reveals a set of constitutive and adaptive genomic regions for drought tolerance. Theor Appl Genet 126:583–600

    Article  CAS  PubMed  Google Scholar 

  • Azam F, Chang X, Jing R (2015) Mapping QTL for chlorophyll fluorescence kinetics parameters at seedling stage as indicators of heat tolerance in wheat. Euphytica 202:245–258

    Article  CAS  Google Scholar 

  • Babu NN, Krishnan SG, Vinod KK, Krishnamurthy SL, Singh VK, Singh MP, Singh AK (2017) Marker aided incorporation of Saltol, a major QTL associated with seedling stage salt tolerance, into Oryza sativa “Pusa Basmati 1121.”. Front Plant Sci 8:41

    Article  PubMed  PubMed Central  Google Scholar 

  • Bailey-Serres J, Voesenek LACJ (2008) Flooding stress: acclimations and genetic diversity. Annu Rev Plant Biol 59:313–339

    Article  CAS  PubMed  Google Scholar 

  • Bassi FM, Bentley AR, Charmet G, Ortiz R, Crossa J (2016) Breeding schemes for the implementation of genomic selection in wheat (Triticum spp.). Plant Sci 242:23–36

    Article  CAS  PubMed  Google Scholar 

  • Barakat MN, Saleh MS, Al-Doss AA et al (2015) Mapping of QTLs associated with abscisic acid and water stress in wheat. Biol Plant 59:291

    Article  CAS  Google Scholar 

  • Bernardo R (2008) Molecular markers and selection for complex traits in plants: learning from the last 20 years. Crop Sci 48(5):1649–1664

    Article  Google Scholar 

  • Bernstein L, Bosch P, Canziani O, Chen Z. Christ, R., Davidson O, et al (2007) Climate change 2007: synthesis report. Contribution of working groups I. II and III to the Fourth Assessment Report of the Intergovernmental Panel on Climate Change. In Edited by Core Writing Team, Pachauri RK, Reisinger A. Geneva: Intergovernmental Panel on Climate Change

  • Beyene Y, Semagn K, Crossa J, Mugo S, Atlin GN, Tarekegne A, Meisel B, Sehabiague P, Vivek BS, Oikeh S, Alvarado G (2016) Improving maize grain yield under drought stress and non-stress environments in sub-Saharan Africa using marker-assisted recurrent selection. Crop Sci 56(1):344–353

    Article  CAS  Google Scholar 

  • Bhattarai U, Prasanta KS (2018) Identification of drought responsive QTLs during vegetative growth stage of rice using a saturated GBS-based SNP linkage map. Euphytica 214:2:38

  • Bizimana JB, Luzi-Kihupi A, Murori RW, Singh RK (2017) Identification of quantitative trait loci for salinity tolerance in rice (Oryza sativa L.) using IR29/Hasawi mapping population. J Genet 96(4):571–582

    Article  CAS  PubMed  Google Scholar 

  • Blum A (2017) Osmotic adjustment is a prime drought stress adaptive engine in support of plant production. Plant Cell Environ 40(1):4–10

    Article  CAS  PubMed  Google Scholar 

  • Buu BC, Ha PT, Tam BP, Nhien TT, Van Hieu N, Phuoc NT, Lang NT (2014) Quantitative trait loci associated with heat tolerance in rice (Oryza sativa L.). Plant Breed Biotechnol 2(1):14–24

    Article  Google Scholar 

  • Cane MA, Maccaferri M, Nazemi G, Salvi S, Francia R, Colalongo C, Tuberosa R (2014) Association mapping for root architectural traits in durum wheat seedlings as related to agronomic performance. Mol Breed 34(4):1629–1645

    Article  PubMed  PubMed Central  Google Scholar 

  • Ciarmiello LF, Woodrow P, Fuggi A, Pontecorvo G, Carillo P (2011) Plant genes for abiotic stress. In Abiotic stress in plants—mechanisms and adaptations. InTech

  • Christopher J, Christopher M, Jennings R, Jones S, Fletcher S, Borrell A, Manschadi AM, Jordan D, Mace E, Hammer G (2013) QTL for root angle and number in a population developed from bread wheats (Triticum aestivum) with contrasting adaptation to water-limited environments. Theor Appl Genet 126:1563–1574

    Article  CAS  PubMed  Google Scholar 

  • Collard BCY, Mackill DJ (2008) Marker-assisted selection: an approach for precision plant breeding in the twenty-first century. Philos Trans R Soc Lond B Bio Sci 363:557–572

    Article  CAS  Google Scholar 

  • Cramer GR, Urano K, Delrot S, Pezzotti M, Shinozaki K (2011) Effects of abiotic stress on plants: a systems biology perspective. BMC Plant Biol 11:163

    Article  PubMed  PubMed Central  Google Scholar 

  • Crossa J, Pérez-Rodríguez P, Cuevas J, Montesinos-López O, Jarquín D, de los Campos G, Burgueño J, Camacho-González JM, Pérez-Elizalde S, Beyene YG, Dreisigacker S (2017) Genomic selection in plant breeding: methods, models, and perspectives. Trends Plant Sci 22(11):961–975

    Article  CAS  PubMed  Google Scholar 

  • Dai J, Bai G, Zhang D, Hong D (2013) Validation of quantitative trait loci for aluminum tolerance in Chinese wheat landrace FSW. Euphytica 192:171–179

    Article  CAS  Google Scholar 

  • Das G, Rao GJN (2015) Molecular marker assisted gene stacking for biotic and abiotic stress resistance genes in an elite rice cultivar. Front Plant Sci 6:698

    PubMed  PubMed Central  Google Scholar 

  • De Leon TBD, Linscombe S, Subudhi PK (2016) Molecular dissection of seedling salinity tolerance in rice (Oryza sativa L.) using a high-density GBS-based SNP linkage map. Rice 9:52

    Article  PubMed  PubMed Central  Google Scholar 

  • De Leon TB, Linscombe S, Subudhi PK (2017) Identification and validation of QTL for seedling salinity tolerance in introgression lines of a salt tolerant rice landrace ‘Pokkali’. PLoS One 12(4):e0175361

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Depuydt S, Hardtke CS (2011) Hormone signalling crosstalk in plant growth regulation. Curr Biol 21(9):365–373

    Article  CAS  Google Scholar 

  • Dixit S, Singh A, Sandhu N, Bhandari A, Vikram P, Kumaret A (2017a) Combining drought and submergence tolerance in rice: marker-assisted breeding and QTL combination effects. Mol Breed 37:143

    Article  PubMed  PubMed Central  Google Scholar 

  • Dixit S, Singh A, Sta Cruz MT, Maturan PT, Amante M, Kumar A (2014) Multiple major QTL lead to stable yield performance of rice cultivars across varying drought intensities. BMC Genet 15:16. https://doi.org/10.1186/1471-2156-15-16

    Article  PubMed  PubMed Central  Google Scholar 

  • Dixit S, Yadaw RB, Mishra KK, Kumar A (2017b) Marker-assisted breeding to develop the drought-tolerant version of Sabitri, a popular variety from Nepal. Euphytica 213:184

    Article  PubMed  PubMed Central  Google Scholar 

  • Donde R, Mukherjee M, Barik M, Baksh SKY, Padhi B, Mahadani P, Behera L, Swain P, Sahu K, Singh N, Czechowski T, Graham I, McCouch SR, Singh ON, Dash SK (2017) Marker-assisted introgression of drought tolerance from wild ancestors into popular Indian rice varieties using a 7K infinium SNP array [Abstract]. In: Abstracts of the NGBT conference; Oct 02–04, 2017; Bhubaneswar, Odisha, India. Can J biotech 1:205

  • Dufey I, Draye X, Lutts S, Lorieux M, Martinez C, Bertin P (2015) Novel QTLs in an interspecific backcross Oryza sativa × Oryza glaberrima for resistance to iron toxicity in rice. Euphytica DOI 204:609–625. https://doi.org/10.1007/s10681-014-1342-7

    Article  CAS  Google Scholar 

  • Edreira JR, Otegui ME (2013) Heat stress in temperate and tropical maize hybrids: a novel approach for assessing sources of kernel loss in field conditions. Field Crops Res 142:58–67

    Article  Google Scholar 

  • Frey FP, Presterl T, Lecoq P, Orlik A, Stich B (2016) First steps to understand heat tolerance of temperate maize at adult stage: identification of QTL across multiple environments with connected segregating populations. Theor Appl Genet 129(5):945–961

    Article  PubMed  PubMed Central  Google Scholar 

  • Gahlaut V, Jaiswal V, Tyagi BS, Singh G, Sareen S, Balyan HS, Gupta PK (2017) QTL mapping for nine drought-responsive agronomic traits in bread wheat under irrigated and rain-fed environments. PLoS ONE 12(8):e0182857

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Gao JP, Chao DY, Lin HX (2008) Towards understanding molecular mechanisms of abiotic stress responses in rice. Rice 1(1):36–51

    Article  Google Scholar 

  • Gimhani DR, Glenn B, Gregorio NS, Kottearachchi, WLG S (2016) SNP-based discovery of salinity-tolerant QTLs in a bi-parental population of rice (Oryza sativa). Mol Gen Genomics 291(6):2081–2099

    Article  CAS  Google Scholar 

  • Gonzaga ZJC, Carandang J, Sanchez DL, Mackill DJ, Septiningsih EM (2016) Mapping additional QTLs from FR13A to increase submergence tolerance in rice beyond SUB1. Euphytica 209:627–636

    Article  CAS  Google Scholar 

  • Grayson M (2013) Agriculture and drought. Nature 501(7468):S1–S1

    Article  CAS  PubMed  Google Scholar 

  • Hampton M, Xu WW, Kram BW, Chambers EM, Ehrnriter JS, Gralewski JH, Joyal T, Carter CJ (2010) Identification of differential gene expression in Brassica rapanectaries through expressed sequence tag analysis. PLoS ONE.;5:e8782

  • Hasanuzzaman M, Nahar K, Fujita M (2013) Extreme temperatures, oxidative stress and antioxidant defense in plants. Abiotic stress-plant responses and applications in agriculture. InTech, Rijeka, Croatia

    Google Scholar 

  • Hilker M, Schwachtje J, Baier M, Balazadeh S, Bäurle I, Geiselhardt S, Hincha DK, Kunze R, Mueller-Roeber B, Rillig MC, Rolff J (2016) Priming and memory of stress responses in organisms lacking a nervous system. Biol Rev 91(4):1118–1133

    Article  PubMed  Google Scholar 

  • Hirel B, Le Gouis J, Ney B, Gallais A (2007) The challenge of improving nitrogen use efficiency in crop plants: towards a more central role for genetic variability and quantitative genetics within integrated approaches. J Exp Bot 58(9):2369–2387

    Article  CAS  PubMed  Google Scholar 

  • Ho VT, Thomson MJ, Ismail AM (2016) Development of salt tolerant IR64 near isogenic lines through marker-assisted breeding. J Crop Sci Biotech 19(5):373–381

    Article  Google Scholar 

  • Hoque ABMZ, Haque MA, Sarker MRA, Rahman MA (2015a) Marker-assisted introgression of Saltol locus into genetic background of BRRI Dhan-49. Int J Biosci 6:71–80

    CAS  Google Scholar 

  • Hoque MMI, Jun Z, Guoying W (2015b) Mapping QTLs associated with salinity tolerance in maize at seedling stage. Int J 3(10):1–23

    Google Scholar 

  • Hossain H, Rahman MA, Alam MS, Singh RK (2015) Mapping of quantitative trait loci associated with reproductive-stage salt tolerance in rice. J Agro and Crop Sci 201(1):17–31

    Article  CAS  Google Scholar 

  • Hussain I, Ahsan M, Saleem M, Ahmed A (2009) Gene action studies for agronomic traits in maize under normal and water stress conditions. Pak J Agri Sci 46:108–112

    Google Scholar 

  • Hussain B, Lucas SJ, Ozturk L, Budak H (2017) Mapping QTLs conferring salt tolerance and micronutrient concentrations at seedling stage in wheat. Sci Rep 7(1):15662

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • IPCC (2007) Fourth assessment report: synthesis. Published online 17 Nov 2007. http://www.ipcc.ch/pdf/assessment-report/ar4/syr/ar4_syr.pdf

  • Iqbal AM, Nehvi FA, Wani SA, Qadir R, Dar ZA (2007) Combining ability analysis for yield and yield related traits in maize (Zea mays L.). Int J Plant Breed Genet 1:101–105. https://doi.org/10.3923/ijpbg.2007.101.105

    Article  Google Scholar 

  • Jain N, Singh GP, Singh PK, Ramya P, Krishna H, Ramya KT, Todkar L, Amasiddha B, Prashant KC, Vijay P (2014) Molecular approaches for wheat improvement under drought and heat stress. Indian J Genet 74(4):578–583

    Google Scholar 

  • Jiang GL (2013) Molecular markers and marker assisted breeding in plants. In: Anderson SB (ed) Plant breeding from laboratories to fields. InTech, Croatia

    Google Scholar 

  • Jiang QY, Zhuo F, Long SH, Zhao HD, Yang DJ, Ye ZH, Li SS, Jing YX (2016) Can arbuscular mycorrhizal fungi reduce Cd uptake and alleviate Cd toxicity of Lonicera japonica grown in Cd-added soils? Sci Rep 6:21805

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kaur R, Saxena VK, Malhi NS (2010) Combining ability for heat tolerance traits in spring maize (Zea mays L.). Maydica 55:195–199

    Google Scholar 

  • Khodarahmpour Z (2011) Effect of drought stress induced by polyethylene glycol (PEG) on germination indices in corn (Zea mays L.) hybrids. African J Biotech 10(79):18222–18227

    CAS  Google Scholar 

  • Kumar V, Singh A, Mithra SA, Krishnamurthy SL, Parida SK, Jain S, Tiwari KK, Kumar P, Rao AR, Sharma SK, Khurana JP (2015) Genome-wide association mapping of salinity tolerance in rice (Oryza sativa). DNA Res 22(2):133–145

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lafarge T, Bueno C, Frouin J, Jacquin L, Courtois B, Ahmadi N (2017) Genome-wide association analysis for heat tolerance at flowering detected a large set of genes involved in adaptation to thermal and other stresses. PLoS One 12(2):e0171254. https://doi.org/10.1371/journal.pone.0171254

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lang NT, Ha PTT, Tru PC, Toan TB, Buu BC, Cho Y (2015) Breeding for heat tolerance rice based on marker-assisted backcrosing in Vietnam. Plant Breed Biotech 3(3):274–281

    Article  Google Scholar 

  • Läuchli A, Grattan SR (2007) Plant growth and development under salinity stress. In: Advances in molecular breeding toward drought and salt tolerant crops. Springer Netherlands, Heidelberg

    Google Scholar 

  • Li XM, Chao DY, Wu Y, Huang X, Chen K, Cui LG, Su L, Ye WW, Chen H, Chen HC, Dong NQ (2015) Natural alleles of a proteasome α2 subunit gene contribute to thermotolerance and adaptation of African rice. Nature Genet 47(7):827–833

    Article  CAS  PubMed  Google Scholar 

  • Li C, Sun B, Li Y, Liu C, Wu X, Zhang D, Shi Y, Song Y, Buckler ES, Zhang Z, Wang T (2016) Numerous genetic loci identified for drought tolerance in the maize nested association mapping populations. BMC Genomics 17(1):894

    Article  PubMed  PubMed Central  Google Scholar 

  • Maccaferri M, El-Feki W, Nazemi G, Salvi S, Canè MA, Colalongo MC, Stefanelli S, Tuberosa R (2016) Prioritizing quantitative trait loci for root system architecture in tetraploid wheat. J Exp Bot 67(4):1161–1178

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Maiti RK, Satya P (2014) Research advances in major cereal crops for adaptation to abiotic stresses. GM Crops & Food 5(4):259–279

    Article  CAS  Google Scholar 

  • Malik S, Rahman M, Malik TA (2015) Genetic mapping of potential QTLs associated with drought tolerance in wheat. J Anim Plant Sci 25(4):1032–1040

    CAS  Google Scholar 

  • Martinez AK, Soriano JM, Tuberosa R, Koumproglou R, Jahrmann T, Salvi S (2016) Yield QTLome distribution correlates with gene density in maize. Plant Sci 242:300–309

    Article  CAS  PubMed  Google Scholar 

  • Merchuk-Ovnat L, Barak V, Fahima T, Ordon F, Lidzbarsky GA, Krugman T, Saranga Y (2016) Ancestral QTL alleles from wild emmer wheat improve drought resistance and productivity in modern wheat cultivars. Front Plant Sci 7:452

    Article  PubMed  PubMed Central  Google Scholar 

  • Mitchell-Olds T (2010) Complex-trait analysis in plants. Genome biology, 11(4):113

  • Mishra KK, Vikram P, Yadaw RB, Swamy BPM, Dixit S, Sta Cruz MT, Maturan P, Marker S, Kumar A (2013) qDTY 12.1: a locus with a consistent effect on grain yield under drought in rice. BMC Genet 14:12

    Article  PubMed  PubMed Central  Google Scholar 

  • Mittler R (2006) Abiotic stress, the field environment and stress combination. Trends Plant Sci 11(1):15–19

    Article  CAS  PubMed  Google Scholar 

  • Munns R, Tester M (2008) Mechanisms of salinity tolerance. Ann Rev Plant Biol 59:651–681

    Article  CAS  Google Scholar 

  • Muthamilarasan M, Theriappan P, Prasad M (2013) Recent advances in crop genomics for ensuring food security. Curr Sci 105:155–158

    Google Scholar 

  • Muraya MM, Ndirangu CM, Omolo EO (2006) Heterosis and combining ability in diallel crosses involving maize (Zea mays L.) S1 lines. Aus J Exp Agri 46:387–394

    Article  Google Scholar 

  • NSSO (2012) Key indicators of household consumer expenditure in India, 2009–10 NSS 66th round July 2009 to June 2010 and earlier issues. National Sample Survey Office, Ministry of Statistics and Programme Implementation, Govt. of India

    Google Scholar 

  • Osakabe Y, Osakabe K, Shinozaki K, Tran LSP (2014) Response of plants to water stress. Front Plant Sci 5:86

    Article  PubMed  PubMed Central  Google Scholar 

  • Osman KA, Tang B, Wang Y, Chen J, Yu F, Li L, Han X, Zhang Z, Yan J, Zheng Y, Yue B (2013) Dynamic QTL analysis and candidate gene mapping for waterlogging tolerance at maize seedling stage. PLoS One 8(11):e79305

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Parida AK, Das AB (2005) Salt tolerance and salinity effects on plants: a review. Ecotoxicol Environ Saf 60(3):324–349

    Article  CAS  PubMed  Google Scholar 

  • Peleg Z, Fahima T, Krugman T, Abbo S, Yakir D, Korol AB (2009) Genomic dissection of drought resistance in durum wheat × wild emmer wheat recombinant inbred line population. Plant Cell Environ 32:758–779

    Article  CAS  PubMed  Google Scholar 

  • Pitman MG, Läuchli A (2002) Global impact of salinity and agricultural ecosystems. Salinity: Environment-Plants-Molecules 3:20

    Google Scholar 

  • Prince SJ, Beena R, Michael GS, Senthivel S, Chandra BR (2015) Mapping consistent rice (Oryza sativa L.) yield QTLs under drought stress in target rainfed environments. Rice 8:25

  • Ren Y, Qian Y, Xu Y, Zou C, Liu D, Zhao X, Zhang A, Tong Y (2017) Characterization of QTLs for root traits of wheat grown under different nitrogen and phosphorus supply levels. Front Plant Sci 8:2096

    Article  PubMed  PubMed Central  Google Scholar 

  • Rengasamy P (2006) World salinization with emphasis on Australia. J Exp Bot 57(5):1017–1023

    Article  CAS  PubMed  Google Scholar 

  • Revilla P, Rodríguez VM, Ordás A, Rincent R, Charcosset A, Giauffret C, Melchinger AE, Schön C-C, Bauer E, Altmann T, Brunel D (2016) Association mapping for cold tolerance in two large maize inbred panels. BMC Plant Biol 16(1):1–10

    Article  CAS  Google Scholar 

  • Ribaut JM, Ragot M (2007) Marker-assisted selection to improve drought adaptation in maize: the backcross approach, perspectives, limitations, and alternatives. J Exp Bot 58:351–360

    Article  CAS  PubMed  Google Scholar 

  • Rutkoski JE, Heffner EL, Sorrells ME (2011) Genomic selection for durable stem rust resistance in wheat. Euphytica 179(1):161–173

    Article  Google Scholar 

  • Saleem MA, Malik TA, Shakeel A (2015) Genetics of physiological and agronomic traits in upland cotton under drought stress. Pak J Agri Sci 52:317–324

    Google Scholar 

  • Salvi S, Tuberosa R, Chiapparino E, Maccaferri M, Veillet S, van Beuningen L, Isaac P, Edwards K, Phillips RL (2002) Toward positional cloning of Vgt1, a QTL controlling the transition from the vegetative to the reproductive phase in maize. Plant Mol Biol 48(5–6):601–613

    Article  CAS  PubMed  Google Scholar 

  • Salvi S, Tuberosa R (2007) Cloning QTLs in plants. In: Genomics-assisted crop improvement. Springer, Dordrecht, pp 207–225

    Chapter  Google Scholar 

  • Salvi S, Tuberosa R (2015) The crop QTLome comes of age. Curr Opin Biotechnol 32:179–185

    Article  CAS  PubMed  Google Scholar 

  • Salvi S, Giuliani S, Ricciolini C, Carraro N, Maccaferri M, Presterl T, Ouzunova M, Tuberosa R (2016) Two major quantitative trait loci controlling the number of seminal roots in maize co-map with the root developmental genes rtcs and rum1. J Exp Bot 67(4):1149–1159

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sandhu N, Singh A, Dixit S, Sta Cruz MT, Maturan PC, Jain RK, Kumar A (2014a) Identification and mapping of stable QTL with main and epistasis effect on rice grain yield under upland drought stress. BMC Genet 15:63

    Article  PubMed  PubMed Central  Google Scholar 

  • Sandhu N, Torres RO, Sta Cruz MT, Maturan PC, Jain R, Kumar A, Henry A (2014b) Traits and QTLs for development of dry direct-seeded rainfed rice varieties. J Exp Bot 61:225–244

    Google Scholar 

  • Sangodele EA, Hanchinal RR, Hanamaratti NG, Shenoy V, Kumar MV (2014) Analysis of drought tolerant QTL linked to physiological and productivity component traits under water-stress and non-stress in rice (Oryza sativa L.). Int J Curr Res Acd Rev 2(5):108–113

    CAS  Google Scholar 

  • Shamsudin NAA, Swamy BM, Ratnam W, Cruz MTS, Raman A, Kumar A (2016) Marker assisted pyramiding of drought yield QTLs into a popular Malaysian rice cultivar, MR219. BMC Genet 17(1):30

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Shanmugavadivel PS, Sv AM, Prakash C, Ramkumar MK, Tiwari R, Mohapatra T, Singh NK (2017) High resolution mapping of QTLs for heat tolerance in rice using a 5K SNP Array. Rice 10(1):28

    Article  Google Scholar 

  • Sharma DK, Torp AM, Rosenqvist E, Ottosen CO, Andersen SB (2017) QTLs and potential candidate genes for heat stress tolerance identified from the mapping populations specifically segregating for Fv/Fm in wheat. Front Plant Sci 8:1668

    Article  PubMed  PubMed Central  Google Scholar 

  • Shi Y, Gao L, Wu Z, Zhang X, Wang M, Zhang C, Li Z (2017) Genome-wide association study of salt tolerance at the seed germination stage in rice. BMC Plant Biol 17(1):92

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Shikha M, Kanika A, Rao AR, Mallikarjuna MG, Gupta HS, Nepolean T (2017) Genomic selection for drought tolerance using genome-wide SNPs in maize. Front Plant Sci 8:550

    Article  PubMed  PubMed Central  Google Scholar 

  • Silva EN, Ribeiro RV, Ferreira-Silva SL, Viégas RA, Silveira JAG (2010) Comparative effects of salinity and water stress on photosynthesis, water relations and growth of Jatropha curcas plants. J Arid Environ 74:1130–1137

    Article  Google Scholar 

  • Singh VK, Singh BD, Kumar A Maurya S, Krishnan SG, Vinod KK, Singh MP, Ellur RK, Bhowmick P K, Singh AK (2018) Marker-assisted introgression of Saltol QTL enhances seedling stage salt tolerance in the rice variety “Pusa Basmati 1.” Intl J Genomics Article ID 8319879, 12 pages

  • Smita S, Lenka SK, Katiyar A, Jaiswal P, Preece J, Bansal KC (2011) QlicRice: a web interface for abiotic stress responsive QTL and loci interaction channels in rice. Database 1:1–9

    Google Scholar 

  • Song J, Weng Q, Ma H, Yuan J, Wang L, Liu Y (2016) Cloning and expression analysis of the Hsp70 gene ZmERD2 in Zea mays. Biotechnol Biotechnol Equip 30(2):219–226

    Article  CAS  Google Scholar 

  • Soto-Cerda BJ, Inostroza-Blancheteau C, Mathias M, Penaloza E, Zuñiga J, Muñoz G, Rengel Z, Salvo-Garrido H (2015) Marker-assisted breeding for TaALMT1, a major gene conferring aluminium tolerance to wheat. Biol Plant 59(1):83–91

    Article  CAS  Google Scholar 

  • Spindel J, Begum H, Akdemir D, Virk P, Collard B, Redona E, McCouch SR (2015) Genomic selection and association mapping in rice (Oryza sativa): effect of trait genetic architecture, training population composition, marker number and statistical model on accuracy of rice genomic selection in elite, tropical rice breeding lines. PLoS Genet 11(2):e1004982

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Steven J, Brandner C, Salvucci M (2002) Sensitivity of photosynthesis in C4 maize plant to heat stress. Plant Physiol 129:1773–1780

    Article  CAS  Google Scholar 

  • Swamy BPM, Ahmed HU, Henry A (2013) Genetic, physiological, and gene expression analyses reveal that multiple QTL enhance yield of rice mega-variety IR64 under drought. PLoS One 8:e62795

    Article  CAS  PubMed  Google Scholar 

  • Talukder SK, Babar MA, Vijayalakshmi K, Poland J, Prasa PV, Bowden R, Fritz A (2014) Mapping QTL for the traits associated with heat tolerance in wheat (Triticum aestivum L.). BMC Genet 15:97

    Article  PubMed  PubMed Central  Google Scholar 

  • Thomashow MF (2010) Molecular basis of plant cold acclimation: insights gained from studying the CBF cold response pathway. Plant Physiol 154(2):571–577

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Thomson MJ, de Ocampo M, Egdane J, Rahman MA, Sajise AG, Adorada DL et al (2010) Characterizing the Saltol quantitative trait locus for salinity tolerance in rice. Rice 3(2–3):148–160

    Article  Google Scholar 

  • Trachsel S, Sun D, SanVicente FM, Zheng H, Atlin GN, Suarez EA, Babu R, Zhang X (2016) Identification of QTL for early vigor and stay-green conferring tolerance to drought in two connected advanced backcross populations in tropical maize (Zea mays L.). PloS ONE 11(3):e0149636

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Turki N, Shehzad T, Harrabi M, Okuno K (2015) Detection of QTLs associated with salinity tolerance in durum wheat based on association analysis. Euphytica 201:29–41

    Article  CAS  Google Scholar 

  • Uga Y, Sugimoto K, Ogawa S, Rane J, Ishitani M, Hara N, Inoue H (2013) Control of root system architecture by DEEPER ROOTING 1 increases rice yield under drought conditions. Nature Genet 45(9):1097–1102

    Article  CAS  PubMed  Google Scholar 

  • UNU-IHDP UNEP (2014) Inclusive Wealth Report 2014. In: Measuring progress towards sustainability. Cambridge University Press, Cambridge

    Google Scholar 

  • Usatov AV, Alabushev AV, Kostylev PI, Azarin KV, Makarenko MS, Usatova OA (2015) Introgression the Saltol QTL into the elite rice variety of Russia by marker-assisted selection. Am J Agric Biol Sci 10:165–169

    Article  CAS  Google Scholar 

  • Varshney RK, Singh VK, Hickey JM, Xun X, Marshall DF, Wang J et al (2016) Analytical and decision support tools for genomics-assisted breeding. Trends in plant science, 21(4), 354–363

  • Varshney RK, Terauchi R, McCouch SR (2014) Harvesting the promising fruits of genomics: applying genome sequencing technologies to crop breeding. PLoS Biol 12:e1001883

    Article  PubMed  PubMed Central  Google Scholar 

  • Varshney RK, Graner A, Sorrells ME (2005) Genomics-assisted breeding for crop improvement. Trends Plant Sci 10:621–630

    Article  CAS  PubMed  Google Scholar 

  • Veyrieras JB, Goffinet B, Charcosset A (2007) MetaQTL: a package of new computational methods for the meta-analysis of QTL mapping experiments. BMC bioinformatics 8(1):49

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Vikram P, Swamy BM, Dixit S, Ahmed HU, Cruz MTS, Singh AK, Kumar A (2011) qDTY 1.1, a major QTL for rice grain yield under reproductive-stage drought stress with a consistent effect in multiple elite genetic backgrounds. BMC Genet 12(1):89

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Vivitha P, Raveendran M, Vijayalakshmi D (2017) Introgression of QTLs controlling spikelet fertility maintains membrane integrity and grain yield in improved white Ponni derived progenies exposed to heat stress. Rice Sci 24(1):32–40

    Article  Google Scholar 

  • Wahid A, Gelani S, Ashraf M, Foolad MR (2007) Heat tolerance in plants: an overview. Environ Exp Bot 61(3):199–223

    Article  Google Scholar 

  • Waines JG, Ehdaie B (2007) Domestication and crop physiology: roots of green-revolution wheat. Ann Bot 100:991–998

    Article  PubMed  PubMed Central  Google Scholar 

  • Wani SH, Kumar V, Shriram V, Sah SK (2016) Phytohormones and their metabolic engineering for abiotic stress tolerance in crop plants. Crop J 4:162–176

    Article  Google Scholar 

  • Wani SH, Choudhary M, Kumar P, Akram NA, Surekha C, Ahmad P, Gosal SS (2018) Marker-assisted breeding for abiotic stress tolerance in crop plants. In: Biotechnologies of crop improvement, vol 3. Springer, Cham, pp 1–23

    Google Scholar 

  • Wassman R, Jagadish SVK, Sumfleth K, Pathak H, Howell G, Ismail A, Serraj R, Redona E, Singh RK, Heuer S (2009) Regional vulnerability of climate change impacts on Asian rice production and scope for adaptation. Adv Agron 102:91–133

    Article  Google Scholar 

  • Watson A, Ghosh S, Williams MJ, Cuddy WS, Simmonds J, Rey MD, Asyraf Md Hatta M, Hinchliffe A, Steed A, Reynolds D, Adamski NM, Breakspear A, Korolev A, Rayner T, Dixon LE, Riaz A, Martin W, Ryan M, Edwards D, Batley J, Raman H, Carter J, Rogers C, Domoney C, Moore G, Harwood W, Nicholson P, Dieters MJ, DeLacy IH, Zhou J, Uauy C, Boden SA, Park RF, Wulff BBH, Hickey LT (2018) Speed breeding is a powerful tool to accelerate crop research and breeding. Nature Plants 4(1):23–29

    Article  PubMed  Google Scholar 

  • Whitford R, Gilbert M, Langridge P (2010) Biotechnology in agriculture. In: Reynolds MP (ed) Climate change and crop production. CABI Series in Climate Change Vol. 1, Global Plant Clinic (CABI), Oxfordshire, pp 219–244

    Chapter  Google Scholar 

  • Wu GH (1987) Analysis of genetic effects for quantitative characters at different developmental states in maize. Genetics 18:69

    Google Scholar 

  • Wu LB, Shhadi MY, Gregorio G, Matthus E, Becker M, Frei M (2014) Genetic and physiological analysis of tolerance to acute iron toxicity in rice. Rice 7:8

    Article  PubMed  PubMed Central  Google Scholar 

  • Xu Y, Lu Y, Xie C, Gao S, Wan J, Prasanna BM (2012) Whole-genome strategies for marker-assisted plant breeding. Mol Breed 29:833–854

    Article  CAS  Google Scholar 

  • Xu Y, Li S, Li L, Zhang X, Xu H, An D (2013) Mapping QTLs for salt tolerance with additive, epistatic and QTL × treatment interaction effects at seedling stage in wheat. Plant Breed 132(3):276–283

    Article  CAS  Google Scholar 

  • Xu Z, Jiang Y, Jia B, Zhou G (2016) Elevated-CO2 response of stomata and its dependence on environmental factors. Front Plant Sci 7:657

    PubMed  PubMed Central  Google Scholar 

  • Yao D, Zhang X, Zhao X, Liu C, Wang C, Zhang Z, Zhang C, Wei Q, Wang Q, Yan H, Li F, Su Z (2011) Transcriptome analysis reveals salt-stress regulated biological processes and key pathways in roots of cotton (Gossypium hirsutum L.). Genomics 98:47–55

    Article  CAS  PubMed  Google Scholar 

  • Ye C, Tenorio FA, Argayoso MA, Laza MA, Koh H, Redoña ED, Jagadish KSV, Gregorio GB (2015) Identifying and confirming quantitative trait loci associated with heat tolerance at flowering stage in different rice populations. BMC Genet 16:41

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Yu M, Chen G (2013) Conditional QTL mapping for waterlogging tolerance in two RILs populations of wheat. Springer Plus 2:245

    Article  PubMed  PubMed Central  Google Scholar 

  • Zaidi PH, Rashid Z, Vinayan MT, Almeida GD, Phagna RK, Babu R (2015) QTL mapping of agronomic waterlogging tolerance using recombinant inbred lines derived from tropical maize (Zea mays L.) germplasm. PLoS One 10(4):e0124350

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zhang H, Cui F, Wang L, Li J, Ding A, Zhao C, Bao Y, Yang Q, Wang H (2013a) Conditional and unconditional QTL mapping of drought-tolerance-related traits of wheat seedling using two related RIL populations. J Genet 92:213–231

    Article  PubMed  Google Scholar 

  • Zhang X, Tang B, Yu F, Li L, Wang M, Xue Y, Qiu F (2013b) Identification of major QTL for waterlogging tolerance using genome-wide association and linkage mapping of maize seedlings. Plant Mol Biol Reporter 31(3):594–606

    Article  CAS  Google Scholar 

  • Zhang A, Wang H, Beyene Y, Semagn K, Liu Y, Cao S, Olsen M (2017a) Effect of trait heritability, training population size and marker density on genomic prediction accuracy estimation in 22 bi-parental tropical maize populations. Front Plant Sci 8:1916

    Article  PubMed  PubMed Central  Google Scholar 

  • Zhang X, Pérez-Rodríguez P, Burgueño J, Olsen M, Buckler E, Atlin G, Crossa J (2017b) Rapid cycling genomic selection in a multi-parental tropical maize population. G3: Genes, Genomes, Genetics 7(7):2315–2326

    Article  Google Scholar 

  • Zhao L, Lei J, Huang Y, Zhu S, Chen H, Huang R, Peng Z, Tu Q, Shen X, Yan S (2016) Mapping quantitative trait loci for heat tolerance at anthesis in rice using chromosomal segment substitution lines. Breed Sci 66:358–366

    Article  PubMed  PubMed Central  Google Scholar 

  • Zhu JK (2016) Abiotic stress signaling and responses in plants. Cell 167(2):313–324

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zhu Y, Chen K, Mi X, Chen T, Ali J, Ye G, Xu J, Li Z (2015) Identification and fine mapping of a stably expressed QTL for cold tolerance at the booting stage using an interconnected breeding population in rice. PLoS One 10(12):e0145704

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Shabir Hussain Wani.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

ESM 1

(DOC 127 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Choudhary, M., Wani, S.H., Kumar, P. et al. QTLian breeding for climate resilience in cereals: progress and prospects. Funct Integr Genomics 19, 685–701 (2019). https://doi.org/10.1007/s10142-019-00684-1

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10142-019-00684-1

Keywords

Navigation