Skip to main content
Log in

Comparing Bioremediation Approaches for Agricultural Soil Affected with Petroleum Crude: A Case Study

  • Original research article
  • Published:
Indian Journal of Microbiology Aims and scope Submit manuscript

Abstract

The aim of work was to check and make comparison of efficacy for five approaches for petroleum crude contaminated agricultural soil remediation by making use of soil microcosms. Concerning the published literature in our information, this is the first report comparing five approaches i.e. abiotic losses, native microbial flora, nutrient amendments and pre-adapted native microbial culture and concurrent amendments of nutrients + pre-adapted native microbial culture for agricultural soil bioremediation using Pseudomonas aeruginosa NCIM 5514 by performing soil microcosm experiments. 96.00 ± 0.18% degradation of petroleum hydrocarbon fractions in 60 days of the experiment was observed when nutrients and P. aeruginosa NCIM 5514 were applied concomitantly. In nutrients- and P. aeruginosa NCIM 5514-added microcosm reduction in nitrogen, organic carbon, and phosphorus was noted. P. aeruginosa NCIM 5514, can be applied as a prospective bioremediation agent to remediate petroleum crude contaminated soil.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1

Similar content being viewed by others

References

  1. Whelan MJ, Coulon F, Hince G, Rayner J, McWatters R, Spedding T, Snape I (2015) Fate and transport of petroleum hydrocarbons in engineered biopiles in polar regions. Chemosphere 131:232–240. https://doi.org/10.1016/j.chemosphere.2014.10.088

    Article  CAS  PubMed  Google Scholar 

  2. Mishra S, Jyot J, Kuhad RC, Lal B (2001) In situ bioremediation potential of an oily sludge-degrading bacterial consortium. Curr Microbiol 43:328–335. https://doi.org/10.1007/s002840010311

    Article  CAS  PubMed  Google Scholar 

  3. Chauhan A, Fazlurrahman OJG, Jain RK (2008) Bacterial metabolism of polycyclic aromatic hydrocarbons: strategies for bioremediation. Indian J Microbiol 48:95–113. https://doi.org/10.1007/s12088-008-0010-9

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Wang Y, Liang J, Wang J, Gao S (2018) Combining stable carbon isotope analysis and petroleum-fingerprinting to evaluate petroleum contamination in the Yanchang oilfield located on loess plateau in China. Environ Sci Pollut Res 25:2830–2841. https://doi.org/10.1007/s11356-017-0500-6

    Article  CAS  Google Scholar 

  5. Varjani S, Upasani VN (2019) Influence of abiotic factors, natural attenuation, bioaugmentation and nutrient supplementation on bioremediation of petroleum crude contaminated agricultural soil. J Environ Manag 245:358–366. https://doi.org/10.1016/j.jenvman.2019.05.070

    Article  CAS  Google Scholar 

  6. Kaczorek E, Cieslak K, Bielicka-Daszkiewicz K, Olszanowski A (2013) The influence of rhamnolipids on aliphatic fractions of diesel oil biodegradation by microorganism combinations. Indian J Microbiol 53:84–91. https://doi.org/10.1007/s12088-012-0323-6

    Article  CAS  PubMed  Google Scholar 

  7. Bonfa MR, Grossman MJ, Mellado E, Durrant LR (2011) Biodegradation of aromatic hydrocarbons by Haloarchaea and their use for the reduction of the chemical oxygen demand of hypersaline petroleum produced water. Chemosphere 84:1671–1676. https://doi.org/10.1016/j.chemosphere.2011.05.005

    Article  CAS  PubMed  Google Scholar 

  8. Desforges JW, Sonne C, Levin M, Siebert U, Guise SD, Dietz R (2016) Immunotoxic effects of environmental pollutants in marine mammals. Environ Int 86:126–139. https://doi.org/10.1016/j.envint.2015.10.007

    Article  CAS  PubMed  Google Scholar 

  9. Mittal A, Singh P (2009) Isolation of hydrocarbon degrading bacteria from soils contaminated with crude oil spills. Indian J Exp Biol 47:760–765

    PubMed  Google Scholar 

  10. Patowary K, Patowary R, Kalita MC, Deka S (2016) Development of an efficient bacterial consortium for the potential remediation of hydrocarbons from contaminated sites. Front Microbiol 7:1–14. https://doi.org/10.3389/fmicb.2016.01092

    Article  Google Scholar 

  11. Kumari S, Regar R, Bajaj A, Ch R, Satyanarayana GNV, Mudiam MKR, Manickam N (2016) Simultaneous biodegradation of polyaromatic hydrocarbons by a Stenotrophomonas sp: characterization of nid genes and effect of surfactants on degradation. Indian J Microbiol 57:60–67. https://doi.org/10.1007/s12088-016-0612-6

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Varjani SJ, Gnansounou E, Pandey A (2017) Comprehensive review on toxicity of persistent organic pollutants from petroleum refinery waste and their degradation by microorganisms. Chemosphere 188:280–291. https://doi.org/10.1016/j.chemosphere.2017.09.005

    Article  CAS  PubMed  Google Scholar 

  13. Jiang Y, Brassington KJ, Prpich G, Paton GI, Semple KT, Pollard SJT, Coulon F (2016) Insights into the biodegradation of weathered hydrocarbons in contaminated soils by bioaugmentation and nutrient stimulation. Chemosphere 161:300–307. https://doi.org/10.1016/j.chemosphere.2016.07.032

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Margesin R, Schinner F (2001) Bioremediation (natural attenuation and biostimulation) of diesel-oil-contaminated soil in an alpine glacier skiing area. Appl Environ Microbiol 67:3127–3133. https://doi.org/10.1128/AEM.67.7.3127-3133.2001

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Nikolopoulou M, Pasadakis N, Kalogerakis N (2013) Evaluation of autochthonous bioaugmentation and biostimulation during microcosm-simulated oil spills. Mar Pollut Bull 72:165–173. https://doi.org/10.1016/j.marpolbul.2013.04.007

    Article  CAS  PubMed  Google Scholar 

  16. Varjani SJ, Upasani VN (2017) Crude oil degradation by Pseudomonas aeruginosa NCIM 5514: influence of process parameters. Indian J Exp Biol 55:493–497

    CAS  Google Scholar 

  17. Di Gregorio S, Siracusa G, Becarelli S, Mariotti L, Gentini A, Lorenzi R (2016) Isolation and characterization of a hydrocarbonoclastic bacterial enrichment from total petroleum hydrocarbon contaminated sediments: potential candidates for bioaugmentation in bio-based processes. Environ Sci Pollut Res 23:10587–10594. https://doi.org/10.1007/s11356-015-5944-y

    Article  CAS  Google Scholar 

  18. Varjani SJ (2017) Microbial degradation of petroleum hydrocarbons. Bioresour Technol 223:277–286. https://doi.org/10.1016/j.biortech.2016.10.037

    Article  CAS  PubMed  Google Scholar 

  19. Varjani SJ, Upasani VN (2017) A new look on factors affecting microbial degradation of petroleum hydrocarbon pollutants. Int Biodeterior Biodegrad 120:71–83. https://doi.org/10.1016/j.ibiod.2017.02.006

    Article  CAS  Google Scholar 

  20. Szulc A, Ambrożewicz D, Sydow M, Ławniczak Ł, Piotrowska-Cyplik A, Marecik R, Chrzanowski Ł (2014) The influence of bioaugmentation and biosurfactant addition on bioremediation efficiency of diesel-oil contaminated soil: feasibility during field studies. J Environ Manag 132:121–128. https://doi.org/10.1016/j.jenvman.2013.11.006

    Article  CAS  Google Scholar 

  21. Ramadass K, Megharaj M, Venkateswarlu K, Naidu R (2018) Bioavailability of weathered hydrocarbons in engine oil-contaminated soil: impact of bioaugmentation mediated by Pseudomonas spp. on bioremediation. Sci Total Environ 636:968–974. https://doi.org/10.1016/j.scitotenv.2018.04.379

    Article  CAS  PubMed  Google Scholar 

  22. Varjani SJ (2014) Hydrocarbon degrading and biosurfactants (bio-emulsifiers) producing bacteria from petroleum oil wells. Ph.D. thesis, Kadi Sarva Vishwavidyalaya, Gandhinagar, India

  23. Varjani SJ, Upasani VN (2016) Core flood study for enhanced oil recovery through ex situ bioaugmentation with thermo- and halo-tolerant rhamnolipid produced by Pseudomonas aeruginosa NCIM 5514. Bioresour Technol 220:175–182. https://doi.org/10.1016/j.biortech.2016.08.060

    Article  CAS  PubMed  Google Scholar 

  24. Varjani SJ, Upasani VN (2016) Carbon spectrum utilization by an indigenous strain of Pseudomonas aeruginosa NCIM 5514: production, characterization and surface active properties of biosurfactant. Bioresour Technol 221:510–516. https://doi.org/10.1016/j.biortech.2016.09.080

    Article  CAS  PubMed  Google Scholar 

  25. Varjani SJ, Upasani VN (2016) Biodegradation of petroleum hydrocarbons by oleophilic strain of Pseudomonas aeruginosa NCIM 5514. Bioresour Technol 222:195–201. https://doi.org/10.1016/j.biortech.2016.10.006

    Article  CAS  PubMed  Google Scholar 

  26. Trzesicka-Mlynarz D, Ward OP (1996) Degradation of fluoranthene in a soil matrix by indigenous and introduced bacteria. Biotechnol Lett 18:181–186. https://doi.org/10.1007/BF00128676

    Article  CAS  Google Scholar 

  27. Varjani SJ, Rana DP, Jain AK, Bateja S, Upasani VN (2015) Synergistic ex situ biodegradation of crude oil by halotolerant bacterial consortium of indigenous strains isolated from on shore sites of Gujarat, India. Int Biodeterior Biodegrad 103:11–124. https://doi.org/10.1016/j.ibiod.2015.03.030

    Article  CAS  Google Scholar 

  28. Forsyth JV, Tsao YM, Bleam RD (1995) Bioremediation: when bioaugmentation needed? In: Hinchee RE, Fredrickson J, Alleman BC (eds) Bioaugmentation for site remediation. Battelle Press, Columbus, pp 1–14. https://www.osti.gov/biblio/474234-bioremediation-when-augmentation-needed. Last Accessed 09 June 2019

  29. Unites States Environmental Protection Agency (U.S. EPA) (2017) U.S. Environmental Protection Agency National contingency plan product schedule, January 2017. https://www.epa.gov/sites/production/files/2013-08/documents/schedule.pdf. Last Accessed 29 Apr 2019

  30. Okparanma RN, Azuazu I, Ayotamuno JM (2017) Assessment of the effectiveness of onsite ex situ remediation by enhanced natural attenuation in the Niger Delta region. J Environ Manag 204:291–299. https://doi.org/10.1016/j.jenvman.2017.09.005

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We acknowledge the scientists and faculties of Institute of Reservoir Studies (IRS), ONGC, Ahmedabad; M.G. Science Institute, Ahmedabad; Indian Institute of Advanced Research (IIAR), Gandhinagar and Kadi Sarva Vishwavidyalaya, Gandhinagar for their support and co-operation.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sunita Varjani.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 25 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Varjani, S., Upasani, V.N. Comparing Bioremediation Approaches for Agricultural Soil Affected with Petroleum Crude: A Case Study. Indian J Microbiol 59, 356–364 (2019). https://doi.org/10.1007/s12088-019-00814-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12088-019-00814-0

Keywords

Navigation