Skip to main content
Log in

Functional Analysis of the Marigold (Tagetes erecta) Lycopene ε-cyclase (TeLCYe) Promoter in Transgenic Tobacco

  • Original paper
  • Published:
Molecular Biotechnology Aims and scope Submit manuscript

Abstract

Lycopene ε-cyclases (LCYEs) are key enzymes in carotenoid biosynthesis converting red lycopene to downstream lutein. The flowers of marigold (Tagetes erecta) have been superior sources to supply lutein. However, the transcriptional regulatory mechanisms of LCYe in lutein synthesis are still unclear in marigold. In this work, the expression pattern of the TeLCYe gene in marigold indicated that TeLCYe mainly expressed in floral organs. To gain a better understanding of the expression and regulatory mechanism of TeLCYe gene, the TeLCYe promoter was isolated, sequenced, and analyzed through bioinformatics tools. The results suggested that the sequence of TeLCYe promoter contained various putative cis-acting elements responsive to exogenous and endogenous factors. The full-length TeLCYe promoter and three 5′-deletion fragments were fused to the GUS reporter gene and transferred into tobacco to test the promoter activities. A strong GUS activity was observed in stems of seedlings, leaves of seedlings, middle stems, top leaves, petals, stamens, and stigmas in transgenic tobacco containing full-length TeLCYe promoter LP0-2086. Deletion of − 910 to − 429 bp 5′ to ATG significantly increased the GUS activity in chloroplast-rich tissues and floral organs, while deletion occurring from 1170 to 910 bp upstream ATG decreased the TeLCYe promoter strength in stems of seedlings, leaves of seedlings, top leaves and sepals. Functional characterization of the full-length TeLCYe promoter and its’ deletion fragments in stable transgenic tobacco indicated that the LP0-2086 contains some specific cis-acting elements, which might result in the high-level expression of in floral organs, and LP2-910 might contain some specific cis-acting elements which improved GUS activities in vegetable tissues.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Galpaz, N., Ronen, G., Khalfa, Z., Zamir, D., & Hirschberg, J. (2006). A chromoplast-specific carotenoid biosynthesis pathway is revealed by cloning of the tomato white-flower locus. The Plant Cell, 18, 1947–1960.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Zhu, C., Sanahuja, G., Yuan, D., Farré, G., Arjó, G., Berman, J., et al. (2013). Biofortification of plants with altered antioxidant content and composition: Genetic engineering strategies. Plant Biotechnology Journal, 11, 129–141.

    Article  CAS  PubMed  Google Scholar 

  3. Demmig-Adams, B., & Adams, W. W., III. (1996). The role of xanthophyll cycle carotenoids in the protection of photosynthesis. Trends in Plant Science, 1, 21–26.

    Article  Google Scholar 

  4. Ruiz-Sola, M. Á., & Rodríguez-Concepción, M. (2012). Carotenoid biosynthesis in Arabidopsis: A colorful pathway. The Arabidopsis book/American Society of Plant Biologists, 10.

  5. Han, H., Li, Y., & Zhou, S. (2008). Overexpression of phytoene synthase gene from Salicornia europaea alters response to reactive oxygen species under salt stress in transgenic Arabidopsis. Biotechnology Letters, 30, 1501–1507.

    Article  CAS  PubMed  Google Scholar 

  6. Cazzonelli, C. I. (2011). Carotenoids in nature: Insights from plants and beyond. Functional Plant Biology, 38, 833–847.

    Article  CAS  Google Scholar 

  7. Miller, R., Owens, S. J., & Rørslett, B. (2011). Plants and colour: Flowers and pollination. Optics & Laser Technology, 43, 282–294.

    Article  CAS  Google Scholar 

  8. Zhou, C., Zhao, D., Sheng, Y., Tao, J., & Yang, Y. (2011). Carotenoids in fruits of different persimmon cultivars. Molecules, 16, 624–636.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Maharaj, G. (2016). Color-mediated foraging by pollinators: A comparative study of two passionflower butterflies at Lantana camara.

  10. Liu, C., Russell, R. M., & Wang, X. D. (2003). Exposing ferrets to cigarette smoke and a pharmacological dose of β-carotene supplementation enhance in vitro retinoic acid catabolism in lungs via induction of cytochrome P450 enzymes. The Journal of Nutrition, 133, 173–179.

    Article  CAS  PubMed  Google Scholar 

  11. Tang, G., Hu, Y., Yin, S. A., Wang, Y., Dallal, G. E., Grusak, M. A., et al. (2012). β-Carotene in golden rice is as good as β-carotene in oil at providing vitamin A to children. The American Journal of Clinical Nutrition, 96, 658–664.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Zhu, H., Chen, M., Wen, Q., & Li, Y. (2015). Isolation and characterization of the carotenoid biosynthetic genes LCYB, LCYE and CHXB from strawberry and their relation to carotenoid accumulation. Scientia Horticulturae, 182, 134–144.

    Article  CAS  Google Scholar 

  13. Dwyer, J. H., Navab, M., Dwyer, K. M., Hassan, K., Sun, P., Shircore, A., et al. (2001). Oxygenated carotenoid lutein and progression of early atherosclerosis: The Los Angeles atherosclerosis study. Circulation, 103, 2922–2927.

    Article  CAS  PubMed  Google Scholar 

  14. Heber, D., & Lu, Q. Y. (2002). Overview of mechanisms of action of lycopene. Experimental Biology and Medicine, 227, 920–923.

    Article  CAS  PubMed  Google Scholar 

  15. Granado, F., Olmedilla, B., & Blanco, I. (2003). Nutritional and clinical relevance of lutein in human health. British Journal of Nutrition, 90, 487–502.

    Article  CAS  PubMed  Google Scholar 

  16. Chiu, C. J., & Taylor, A. (2007). Nutritional antioxidants and age-related cataract and maculopathy. Experimental Eye Research, 84, 229–245.

    Article  CAS  PubMed  Google Scholar 

  17. Krinsky, N. I., & Johnson, E. J. (2005). Carotenoid actions and their relation to health and disease. Molecular Aspects of Medicine, 26, 459–516.

    Article  CAS  PubMed  Google Scholar 

  18. Landrum, J. T., Bone, R. A., Krinsky, N. I., Mayne, S. T., & Sies, H. (2004). Mechanistic evidence for eye diseases and carotenoids. Oxidative Stress and Disease, 13, 445–472.

    CAS  Google Scholar 

  19. Pogson, B., McDonald, K. A., Truong, M., Britton, G., & DellaPenna, D. (1996). Arabidopsis carotenoid mutants demonstrate that lutein is not essential for photosynthesis in higher plants. The Plant Cell, 8, 1627–1639.

    CAS  PubMed  PubMed Central  Google Scholar 

  20. Isaacson, T., Ronen, G., Zamir, D., & Hirschberg, J. (2002). Cloning of tangerine from tomato reveals a carotenoid isomerase essential for the production of β-carotene and xanthophylls in plants. Plant Cell, 14, 333–342.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Kato, M., Ikoma, Y., Matsumoto, H., Sugiura, M., Hyodo, H., & Yano, M. (2004). Accumulation of carotenoids and expression of carotenoid biosynthetic genes during maturation in citrus fruit. Plant Physiology, 134, 824–837.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Charles, A. D., Supinya, D., David, L., Paul, S., Volz, R. K., & Allan, A. C. (2012). Metabolic and gene expression analysis of apple (malus × domestica) carotenogenesis. Journal of Experimental Botany, 63, 4497–4511.

    Article  CAS  Google Scholar 

  23. Castillo, R., Fernández, J. A., & Gómez-Gómez, L. (2005). Implications of carotenoid biosynthetic genes in apocarotenoid formation during the stigma development of Crocus sativus and its closer relatives. Plant Physiology, 139, 674–689.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Wisutiamonkul, A., Ampomah-Dwamena, C., Allan, A. C., & Ketsa, S. (2017). Carotenoid accumulation and gene expression during durian (Durio zibethinus) fruit growth and ripening. Scientia Horticulturae, 220, 233–242.

    Article  CAS  Google Scholar 

  25. Cunningham, F. X., & Gantt, E. (1998). Genes and enzymes of carotenoid biosynthesis in plants. Annual Review of Plant Biology, 49, 557–583.

    Article  CAS  Google Scholar 

  26. Dalal, M., Chinnusamy, V., & Bansal, K. C. (2010). Isolation and functional characterization of lycopene β-cyclase (CYC-B) promoter from Solanum habrochaites. BMC Plant Biology, 10, 61.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Diretto, G., Tavazza, R., Welsch, R., Pizzichini, D., Mourgues, F., Papacchioli, V., et al. (2006). Metabolic engineering of potato tuber carotenoids through tuber-specific silencing of lycopene epsilon cyclase. BMC Plant Biology, 6, 13.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Cunningham, F. X., Jr., Chamovitz, D., Misawa, N., Gantt, E., & Hirschberg, J. (1993). Cloning and functional expression in Escherichia coli of a cyanobacterial gene for lycopene cyclase, the enzyme that catalyzes the biosynthesis of β-carotene. FEBS Letters, 328, 130–138.

    Article  CAS  PubMed  Google Scholar 

  29. Cunningham, F. X., & Gantt, E. (2001). One ring or two? Determination of ring number in carotenoids by lycopene ɛ-cyclases. Proceedings of the National Academy of Sciences, 98, 2905–2910.

    Article  CAS  Google Scholar 

  30. Cunningham, F. X., Pogson, B., Sun, Z., McDonald, K. A., DellaPenna, D., & Gantt, E. (1996). Functional analysis of the beta and epsilon lycopene cyclase enzymes of Arabidopsis reveals a mechanism for control of cyclic carotenoid formation. The Plant Cell, 8, 1613–1626.

    CAS  PubMed  PubMed Central  Google Scholar 

  31. Niyogi, K. K. (1999). Photoprotection revisited: Genetic and molecular approaches. Annual Review of Plant Biology, 50, 333–359.

    Article  CAS  Google Scholar 

  32. Fraser, P. D., & Bramley, P. M. (2004). The biosynthesis and nutritional uses of carotenoids. Progress in Lipid Research, 43, 228–265.

    Article  CAS  PubMed  Google Scholar 

  33. Giuliano, G., Tavazza, R., Diretto, G., Beyer, P., & Taylor, M. A. (2008). Metabolic engineering of carotenoid biosynthesis in plants. Trends in Biotechnology, 26, 139–145.

    Article  CAS  PubMed  Google Scholar 

  34. Cazzonelli, C. I., & Pogson, B. J. (2010). Source to sink: Regulation of carotenoid biosynthesis in plants. Trends in Plant Science, 15, 266–274.

    Article  CAS  PubMed  Google Scholar 

  35. Yu, B., Lydiate, D. J., Young, L. W., Schäfer, U. A., & Hannoufa, A. (2008). Enhancing the carotenoid content of Brassica napus seeds by downregulating lycopene epsilon cyclase. Transgenic Research, 17, 573–585.

    Article  CAS  PubMed  Google Scholar 

  36. Guo, X., Yang, L., Hu, H., & Yang, L. (2009). Cloning and expression analysis of carotenogenic genes during ripening of autumn olive fruit (Elaeagnus umbellata). Journal of Agricultural and Food Chemistry, 57, 5334–5339.

    Article  CAS  PubMed  Google Scholar 

  37. Namitha, K. K., Archana, S. N., & Negi, P. S. (2011). Expression of carotenoid biosynthetic pathway genes and changes in carotenoids during ripening in tomato (Lycopersicon esculentum). Food and Function, 2, 168–173.

    Article  CAS  PubMed  Google Scholar 

  38. Shi, Y., Wang, R., Luo, Z., Jin, L., Liu, P., Chen, Q., et al. (2014). Molecular cloning and functional characterization of the lycopene ε-cyclase gene via virus-induced gene silencing and its expression pattern in Nicotiana tabacum. International Journal of Molecular Sciences, 15, 14766–14785.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Feng, F., Wang, G., Wang, Q., Yang, R., & Li, X. (2015). Functional analysis of the key carotenoid biosynthetic genes PSY1, LCYE and CrtRB1 in sweet corn. Journal of South China Agricultural University, 36, 36–42.

    Google Scholar 

  40. Li, Y., Chen, M., Zhu, H., Wen, Q., & Liu, J. (2017). Cloning and expression analysis of LCYE gene in Hibiscus esculentus. Journal of Agricultural Biotechnology, 25, 1600–1611.

    Google Scholar 

  41. Kishimoto, S., & Ohmiya, A. (2006). Regulation of carotenoid biosynthesis in petals and leaves of chrysanthemum (Chrysanthemum morifolium). Physiologia Plantarum, 128, 436–447.

    Article  CAS  Google Scholar 

  42. Kim, S. H., Kim, Y. H., Ahn, Y. O., Ahn, M. J., Jeong, J. C., Lee, H. S., et al. (2013). Downregulation of the lycopene ε-cyclase gene increases carotenoid synthesis via the β-branch-specific pathway and enhances salt-stress tolerance in sweetpotato transgenic calli. Physiologia Plantarum, 147, 432–442.

    Article  CAS  PubMed  Google Scholar 

  43. Del Villar-Martínez, A. A., García-Saucedo, P. A., Carabez-Trejo, A., Cruz-Hernández, A., & Paredes-López, O. (2005). Carotenogenic gene expression and ultrastructural changes during development in marigold. Journal of Plant Physiology, 162, 1046–1056.

    Article  CAS  PubMed  Google Scholar 

  44. Ma, Q., Xu, X., Gao, Y., Wang, Q., & Zhao, J. (2008). Optimisation of supercritical carbon dioxide extraction of lutein esters from marigold (Tagetes erecta L.) with soybean oil as a co-solvent. International Journal of Food Science & Technology, 43, 1763–1769.

    Article  CAS  Google Scholar 

  45. Delgado-Vargas, F., Jiménez, A. R., & Paredes-López, O. (2000). Natural pigments: Carotenoids, anthocyanins, and betalains—characteristics, biosynthesis, processing, and stability. Critical Reviews in Food Science and Nutrition, 40, 173–289.

    Article  CAS  PubMed  Google Scholar 

  46. Park, Y. J., Park, S. Y., Valan Arasu, M., Al-Dhabi, N. A., Ahn, H. G., Kim, J. K., et al. (2017). Accumulation of carotenoids and metabolic profiling in different cultivars of Tagetes flowers. Molecules, 22, 313.

    Article  CAS  PubMed Central  Google Scholar 

  47. Moehs, C. P., Tian, L., Osteryoung, K. W., & DellaPenna, D. (2001). Analysis of carotenoid biosynthetic gene expression during marigold petal development. Plant Molecular Biology, 45, 281–293.

    Article  CAS  PubMed  Google Scholar 

  48. Ning, G., Xiao, X., Lv, H., Li, X., Zuo, Y., & Bao, M. (2012). Shortening tobacco life cycle accelerates functional gene identification in genomic research. Plant Biology, 14, 934–943.

    Article  CAS  PubMed  Google Scholar 

  49. Wang, Z., Ye, S., Li, J., Zheng, B., Bao, M., & Ning, G. (2011). Fusion primer and nested integrated PCR (FPNI-PCR): A new high-efficiency strategy for rapid chromosome walking or flanking sequence cloning. BMC Biotechnology, 11, 109.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Doyle, J. J., & Doyle, J. L. (1990). Isolation of plant DNA from fresh tissue. Focus, 12, 13–15.

    Google Scholar 

  51. Lescot, M., Déhais, P., Thijs, G., Marchal, K., Moreau, Y., Van de Peer, Y., et al. (2002). PlantCARE, a database of plant cis-acting regulatory elements and a portal to tools for in silico analysis of promoter sequences. Nucleic Acids Research, 30, 325–327.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Horsch, R. B., Fry, J., Hoffmann, N., Neidermeyer, J., Rogers, S. G., & Fraley, R. T. (1989). Leaf disc transformation. Plant Molecular Biology Manual (pp. 63–71). Dordrecht: Springer.

    Book  Google Scholar 

  53. Jefferson, R. A. (1987). Assaying chimeric genes in plants: The GUS gene fusion system. Plant Molecular Biology Reporter, 5, 387–405.

    Article  CAS  Google Scholar 

  54. Hua, W., Song, J., Li, C., & Wang, Z. (2012). Molecular cloning and characterization of the promoter of SmGGPPs and its expression pattern in Salvia miltiorrhiza. Molecular Biology Reports, 39, 5775–5783.

    Article  CAS  PubMed  Google Scholar 

  55. Yang, Q., Yuan, D., Shi, L., Capell, T., Bai, C., Wen, N., et al. (2012). Functional characterization of the Gentiana lutea zeaxanthin epoxidase (GlZEP) promoter in transgenic tomato plants. Transgenic Research, 21, 1043–1056.

    Article  CAS  PubMed  Google Scholar 

  56. Zeng, W., Huang, M., Wang, X., Ampomah-Dwamena, C., Xu, Q., & Deng, X. (2013). Identification and functional characterization of the promoter of a phytoene synthase from sweet orange (Citrus sinensis Osbeck). Plant Molecular Biology Reporter, 31, 64–74.

    Article  CAS  Google Scholar 

  57. Wang, H., Ou, C. G., Zhuang, F. Y., & Ma, Z. G. (2014). The dual role of phytoene synthase genes in carotenogenesis in carrot roots and leaves. Molecular Breeding, 34, 2065–2079.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Zhu, C., Yang, Q., Ni, X., Bai, C., Sheng, Y., Shi, L., et al. (2014). Cloning and functional analysis of the promoters that upregulate carotenogenic gene expression during flower development in Gentiana lutea. Physiologia Plantarum, 150, 493–504.

    Article  CAS  PubMed  Google Scholar 

  59. Eun, C. H., Kim, S. U., & Kim, I. J. (2015). The promoter from the Citrus unshiu carotenoid isomerase gene directs differential GUS expression in transgenic Arabidopsis. Molecular Breeding, 35, 116.

    Article  CAS  Google Scholar 

  60. Lu, S., Zhang, Y., Zheng, X., Zhu, K., Xu, Q., & Deng, X. (2016). Molecular characterization, critical amino acid identification, and promoter analysis of a lycopene β-cyclase gene from citrus. Tree Genetics and Genomes, 12, 106.

    Article  Google Scholar 

  61. von Lintig, J., Welsch, R., Bonk, M., Giuliano, G., Batschauer, A., & Kleinig, H. (1997). Light-dependent regulation of carotenoid biosynthesis occurs at the level of phytoene synthase expression and is mediated by phytochrome in Sinapis alba and Arabidopsis thaliana seedlings. Plant Journal, 12, 625–634.

    Article  Google Scholar 

  62. Simkin, A. J., Zhu, C. F., Kuntz, M., & Sandmann, G. (2003). Light-dark regulation of carotenoid biosynthesis in pepper (Capsicum annuum) leaves. Journal of Plant Physiology, 160, 439–443.

    Article  CAS  PubMed  Google Scholar 

  63. Welsch, R., Medina, J., Giuliano, G., Beyer, P., & Von Lintig, J. (2003). Structural and functional characterization of the phytoene synthase promoter from Arabidopsis thaliana. Planta, 216, 523–534.

    CAS  PubMed  Google Scholar 

  64. Welsch, R., Wüst, F., Bär, C., Al-Babili, S., & Beyer, P. (2008). A third phytoene synthase is devoted to abiotic stress-induced abscisic acid formation in rice and defines functional diversification of phytoene synthase genes. Plant Physiology, 147, 367–380.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  65. Toledo-Ortiz, G., Kiryu, Y., Kobayashi, J., Oka, Y., Kim, Y., Nam, H. G., et al. (2010). Subcellular sites of the signal transduction and degradation of phytochrome A. Plant and Cell Physiology, 51, 1648–1660.

    Article  CAS  PubMed  Google Scholar 

  66. Gao, H., Xu, J., Liu, X., Liu, B., & Deng, X. (2011). Light effect on carotenoids production and expression of carotenogenesis genes in Citrus callus of four genotypes. Acta Physiologiae Plantarum, 33, 2485–2492.

    Article  CAS  Google Scholar 

  67. Rouster, J., Leah, R., Mundy, J., & Cameron-Mills, V. (1997). Identification of a methyl jasmonate-responsive region in the promoter of a lipoxygenase 1 gene expressed in barley grain. Plant Journal, 11, 513–523.

    Article  CAS  PubMed  Google Scholar 

  68. Huttly, A. K., & Phillips, A. L. (1995). Gibberellin-regulated plant genes. Physiologia Plantarum, 95, 310–317.

    Article  CAS  Google Scholar 

  69. Prabu, G., & Prasad, D. T. (2012). Functional characterization of sugarcane MYB transcription factor gene promoter (PScMYBAS1) in response to abiotic stresses and hormones. Plant Cell Reports, 31, 661–669.

    Article  CAS  PubMed  Google Scholar 

  70. Qin, Y., Wang, M., Tian, Y., He, W., Han, L., & Xia, G. (2012). Over-expression of TaMYB33 encoding a novel wheat MYB transcription factor increases salt and drought tolerance in Arabidopsis. Molecular Biology Reports, 39, 7183–7192.

    Article  CAS  PubMed  Google Scholar 

  71. Lee, J., Park, I., Lee, Z. W., Kim, S. W., Baek, N., Park, H. S., et al. (2013). Regulation of the major vacuolar Ca2+ transporter genes, by intercellular Ca2+ concentration and abiotic stresses, in tip-burn resistant Brassica oleracea. Molecular Biology Reports, 40, 177–188.

    Article  CAS  PubMed  Google Scholar 

  72. Alok, A., Kumar, J., Thakur, N., Pandey, A., Pandey, A. K., Upadhyay, S. K., et al. (2016). Characterization and expression analysis of phytoene synthase from bread wheat (Triticum aestivum L.). PLoS ONE, 11, e0162443.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  73. Lu, C. A., Lim, E. K., & Yu, S. M. (1998). Sugar response sequence in the promoter of a rice alpha-amylase gene serves as a transcriptional enhancer. Journal of Biological Chemistry, 273, 10120–10131.

    Article  CAS  PubMed  Google Scholar 

  74. Liu, F., Vantoai, T., Moy, L. P., Bock, G., Linford, L. D., & Quackenbush, J. (2005). Global transcription profiling reveals comprehensive insights into hypoxic response in arabidopsis. Plant Physiology, 137, 1115–1129.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  75. Nilsson, L., Müller, R., & Nielsen, T. H. (2010). Dissecting the plant transcriptome and the regulatory responses to phosphate deprivation. Physiologia Plantarum, 139, 129–143.

    Article  CAS  PubMed  Google Scholar 

  76. An, G., Ebert, P. R., Yi, B. Y., & Choi, C. H. (1986). Both TATA box and upstream regions are required for the nopaline synthase promoter activity in transformed tobacco cells. Molecular and General Genetics, 203, 245–250.

    Article  CAS  Google Scholar 

  77. Basi, G., Schmid, E., & Maundrell, K. (1993). TATA box mutations in the Schizosaccharomyces pombe nmt1 promoter affect transcription efficiency but not the transcription start point or thiamine repressibility. Gene, 123, 131–136.

    Article  CAS  PubMed  Google Scholar 

  78. Hsu, C. Y., Creech, R. G., Jenkins, J. N., & Ma, D. P. (1999). Analysis of promoter activity of cotton lipid transfer protein gene LTP6 in transgenic tobacco plants. Plant Science, 143, 63–70.

    Article  CAS  Google Scholar 

  79. Liu, L., Wei, J., Zhang, M., Zhang, L., Li, C., & Wang, Q. (2012). Ethylene independent induction of lycopene biosynthesis in tomato fruits by jasmonates. Journal of Experimental Botany, 63, 5751.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  80. Divya, P., Puthusseri, B., Savanur, M. A., Lokesh, V., & Neelwarne, B. (2018). Effects of methyl jasmonate and carotenogenic inhibitors on gene expression and carotenoid accumulation in coriander (Coriandrum sativum L.) foliage. Food Research International, 111, 11–19.

    Article  CAS  PubMed  Google Scholar 

  81. Liu, H., Meng, F., Miao, H., Chen, S., Yin, T., Hu, S., et al. (2018). Effects of postharvest methyl jasmonate treatment on main health-promoting components and volatile organic compounds in cherry tomato fruits. Food Chemistry, 263, 194–200.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This research was supported by Grants from National Key R&D Program of China (2018YFD1000400) and the Fundamental Research Funds for the Central Universities (2662019PY072). We thank all past and present colleagues in our lab for constructive discussion and technical support.

Author information

Authors and Affiliations

Authors

Contributions

Conceived and designed the experiments: YH, CZ, MB. Performed the experiments: CZ, YW, WW. Analyzed the data: CZ, ZC, QF. Plant cultivation: CZ, YW. Wrote the paper: CZ, YH. Revised the paper: CZ, YH, YW, WW, ZC, QF, MB.

Corresponding author

Correspondence to Yanhong He.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 13 kb)

Supplementary material 2 (DOCX 23 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhang, C., Wang, Y., Wang, W. et al. Functional Analysis of the Marigold (Tagetes erecta) Lycopene ε-cyclase (TeLCYe) Promoter in Transgenic Tobacco. Mol Biotechnol 61, 703–713 (2019). https://doi.org/10.1007/s12033-019-00197-z

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12033-019-00197-z

Keywords

Navigation