Skip to main content
Log in

Identification of T-DNA Insertion Site and Flanking Sequence of a Genetically Modified Maize Event IE09S034 Using Next-Generation Sequencing Technology

  • Original paper
  • Published:
Molecular Biotechnology Aims and scope Submit manuscript

Abstract

Molecular characteristics including information of insertion site, flanking sequence, and copy numbers are the base for the safety assessment and subsequent monitoring of genetically modified organisms (GMOs), which has to be revealed thoroughly in a case-by-case manner. Although both polymerase chain reaction (PCR)-based and next-generation sequencing (NGS)-based approaches are proven to be effective in the molecular characterization of most of GM events, they often fail to work with GM maize events, mainly due to the genome complexity. In this study, by using NGS, we successfully identified the 3′ end T-DNA insertion site and flanking sequence of a GM maize event IE09S034, which were confirmed by PCR amplification and Sanger sequencing. Notably, insertions of unintended exogenous elements were revealed in this event although the single copy of target exogenous genes was also confirmed by digital PCR. The output of this study provides novel and important genetic evidence for the safety assessment and monitoring of GM maize event IE09S034.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. ISAAA. (2017). Global Status of Commercialized Biotech/GM Crops in 2017: Biotech crop adoption surges as economic benefits accumulate in 22 years (Vol. 53, pp. 1–153). Retrieved March 9, 2019, from http://www.geohive.com

  2. Commission, C. A. (2003). Guideline for the conduct of food safety assessment of foods derived from recombinant-DNA plants. CAC/GL, 45(2003), 1–13.

    Google Scholar 

  3. Devos, Y., Aguilera, J., Diveki, Z., Gomes, A., Liu, Y., Paoletti, C., et al. (2014). EFSA’s scientific activities and achievements on the risk assessment of genetically modified organisms (GMOs) during its first decade of existence: Looking back and ahead. Transgenic Research, 23(1), 1–25. https://doi.org/10.1007/s11248-013-9741-4.

    Article  CAS  PubMed  Google Scholar 

  4. Holst-Jensen, A., Bertheau, Y., de Loose, M., Grohmann, L., Hamels, S., Hougs, L., et al. (2012). Detecting un-authorized genetically modified organisms (GMOs) and derived materials. Biotechnology Advances, 30(6), 1318–1335.

    Article  CAS  PubMed  Google Scholar 

  5. Wahler, D., Schauser, L., & Bendiek, J. (2013). Next-generation sequencing as a tool for detailed molecular characterisation of genomic insertions and flanking regions in genetically modified plants: A pilot study using a rice event unauthorised in the EU. Food Analytical Methods, 6(6), 1718–1727.

    Article  Google Scholar 

  6. EFSA Panel on Genetically Modified Organisms (GMO). (2011). Guidance for risk assessment of food and feed from genetically modified plants. EFSA Journal, 9(5), 2150.

    Article  Google Scholar 

  7. Li, R., Quan, S., Yan, X., Biswas, S., Zhang, D., & Shi, J. (2017). Molecular characterization of genetically-modified crops: Challenges and strategies. Biotechnology Advances, 35(2), 302–309. https://doi.org/10.1016/j.biotechadv.2017.01.005.

    Article  CAS  PubMed  Google Scholar 

  8. Guo, B., Guo, Y., Hong, H., & Qiu, L.-J. (2016). Identification of genomic insertion and flanking sequence of G2-EPSPS and GAT transgenes in soybean using whole genome sequencing method. Frontiers in Plant Science, 7, 1–9. https://doi.org/10.3389/fpls.2016.01009.

    Article  Google Scholar 

  9. Bodi, K., Perera, A. G., Adams, P. S., Bintzler, D., Dewar, K., Grove, D. S., et al. (2013). Comparison of commercially available target enrichment methods for next-generation sequencing. Journal of Biomolecular Techniques, 24(2), 73–86. https://doi.org/10.7171/jbt.13-2402-002.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Akritidis, P., Pasentsis, K., Tsaftaris, A. S., Mylona, P. V., & Polidoros, A. N. (2008). Identification of unknown genetically modified material admixed in conventional cotton seed and development of an event-specific detection method. Electronic Journal of Biotechnology, 11(2), 76–83.

    Article  Google Scholar 

  11. Yang, L., Xu, S., Pan, A., Yin, C., Zhang, K., Wang, Z., et al. (2005). Event specific qualitative and quantitative polymerase chain reaction detection of genetically modified MON863 maize based on the 5′-transgene integration sequence. Journal of Agricultural and Food Chemistry, 53(24), 9312–9318. https://doi.org/10.1021/jf051782o.

    Article  CAS  PubMed  Google Scholar 

  12. Fraiture, M., Herman, P., Taverniers, I., De Loose, M., Deforce, D., & Roosens, N. H. (2015). Current and new approaches in GMO detection: Challenges and solutions. BioMed Research International, 2015, 392872. https://doi.org/10.1155/2015/392872.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Windels, P., Taverniers, I., Depicker, A., Van Bockstaele, E., & De Loose, M. (2001). Characterisation of the Roundup Ready soybean insert. European Food Research and Technology, 213(2), 107–112. https://doi.org/10.1007/s002170100336.

    Article  CAS  Google Scholar 

  14. Milcamps, A., Rabe, S., Cade, R., De Framond, A. J., Henriksson, P., Kramer, V., et al. (2009). Validity assessment of the detection method of maize event Bt10 through investigation of its molecular structure. Journal of Agricultural and Food Chemistry, 57(8), 3156–3163.

    Article  CAS  PubMed  Google Scholar 

  15. Yang, L., Wang, C., Holst-Jensen, A., Morisset, D., Lin, Y., & Zhang, D. (2013). Characterization of GM events by insert knowledge adapted re-sequencing approaches. Scientific Reports, 3, 1–9. https://doi.org/10.1038/srep02839.

    Article  CAS  Google Scholar 

  16. Arulandhu, A. J., van Dijk, J., Staats, M., Hagelaar, R., Voorhuijzen, M., Molenaar, B., et al. (2018). NGS-based amplicon sequencing approach; towards a new era in GMO screening and detection. Food Control, 93(November), 201–210. https://doi.org/10.1016/j.foodcont.2018.06.014.

    Article  CAS  Google Scholar 

  17. Pauwels, K., De Keersmaecker, S. C. J., De Schrijver, A., du Jardin, P., Roosens, N. H. C., & Herman, P. (2015). Next-generation sequencing as a tool for the molecular characterisation and risk assessment of genetically modified plants: Added value or not? Trends in Food Science & Technology, 45(2), 319–326.

    Article  CAS  Google Scholar 

  18. Guttikonda, S. K., Marri, P., Mammadov, J., Ye, L., & Soe, K. (2016). Molecular characterization of transgenic events using next generation sequencing approach. PLoS ONE, 11(12), e0149515. https://doi.org/10.1371/journal.pone.0149515.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Abel, H. J., & Duncavage, E. J. (2013). Detection of structural DNA variation from next generation sequencing data: A review of informatic approaches. Cancer Genetics, 206(12), 432–440.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Park, D., Kim, D., Jang, G., Lim, J., Shin, Y.-J., Kim, J., et al. (2015). Efficiency to discovery transgenic loci in GM rice using next generation sequencing whole genome re-sequencing. Genomics & informatics, 13(3), 81.

    Article  Google Scholar 

  21. Park, D., Park, S.-H., Kim, Y. S., Choi, B.-S., Kim, J.-K., Kim, N.-S., et al. (2019). NGS sequencing reveals that many of the genetic variations in transgenic rice plants match the variations found in natural rice population. Genes & Genomics, 41(2), 213–222.

    Article  CAS  Google Scholar 

  22. Kovalic, D., Garnaat, C., Guo, L., Yan, Y., Groat, J., Silvanovich, A., et al. (2012). The use of next generation sequencing and junction sequence analysis bioinformatics to achieve molecular characterization of crops improved through modern biotechnology. The Plant Genome, 5(3), 149–163.

    CAS  Google Scholar 

  23. Guo, B., Guo, Y., Hong, H., & Qiu, L.-J. (2016). Identification of genomic insertion and flanking sequence of G2-EPSPS and GAT transgenes in soybean using whole genome sequencing method. Frontiers in Plant Science, 7, 1009.

    PubMed  PubMed Central  Google Scholar 

  24. McClintock, B. (1950). The origin and behavior of mutable loci in maize. Proceedings of the National Academy of Sciences of the United States of America, 36(6), 344–355. https://doi.org/10.1073/pnas.36.6.344.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. SanMiguel, P., Tikhonov, A., Jin, Y. K., Motchoulskaia, N., Zakharov, D., Melake-Berhan, A., et al. (1996). Nested retrotransposons in the intergenic regions of the maize genome. Science (New York, N.Y.), 274(5288), 765–768. https://doi.org/10.1126/science.274.5288.765.

    Article  CAS  Google Scholar 

  26. June, C., Page, S. E. E. L., Pasternak, S., Liang, C., Zhang, J., Fulton, L., et al. (2012). The B73 maize genome: Complexity, diversity, and dynamics. Science, 326(5956), 1112–1115.

    Google Scholar 

  27. Slotkin, R. K., & Martienssen, R. (2007). Transposable elements and the epigenetic regulation of the genome. Nature Reviews Genetics, 8(4), 272.

    Article  CAS  PubMed  Google Scholar 

  28. Cade, R., Burgin, K., Schilling, K., Lee, T., Ngam, P., & Devitt, N. (2018). Regulatory science evaluation of whole genome sequencing and an insertion site characterization method for molecular characterization of GM maize. Journal of Regulatory Science, 6(1), 1–14.

    Google Scholar 

  29. Zhang, Y., Liu, Y., Ren, Y., Liu, Y., Liang, G., Song, F., et al. (2013). Overexpression of a novel Cry1Ie gene confers resistance to Cry1Ac-resistant cotton bollworm in transgenic lines of maize. Plant Cell, Tissue and Organ Culture (PCTOC), 115(2), 151–158.

    Article  CAS  Google Scholar 

  30. Guo, J., He, K., Hellmich, R. L., Bai, S., Zhang, T., Liu, Y., et al. (2016). Field trials to evaluate the effects of transgenic cry1Ie maize on the community characteristics of arthropod natural enemies. Scientific Reports, 6, 22102.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Bolger, A. M., Lohse, M., & Usadel, B. (2014). Trimmomatic: A flexible trimmer for Illumina sequence data. Bioinformatics, 30(15), 2114–2120. https://doi.org/10.1093/bioinformatics/btu170.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Li, H., Handsaker, B., Wysoker, A., Fennell, T., Ruan, J., Homer, N., et al. (2009). The sequence alignment/map format and SAMtools. Bioinformatics, 25(16), 2078–2079. https://doi.org/10.1093/bioinformatics/btp352.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Waigmann, E., Gomes, A., Lanzoni, A., & Perry, J. N. (2013). New Commission Implementing Regulation on Risk Assessment of GM plant applications: Novel elements and challenges. EFSA Journal, 11(12), e11121.

    Article  Google Scholar 

  34. Padgette, S. R., Kolacz, K. H., Delannay, X., Re, D. B., LaVallee, B. J., Tinius, C. N., et al. (1995). Development, identification, and characterization of a glyphosate-tolerant soybean line. Crop Science, 35(5), 1451–1461.

    Article  CAS  Google Scholar 

  35. Center, P. S. (2000). Updated molecular characterization and safety assessment of Roundup Ready® Soybean event 40-3-2. Monsanto Company Confidential Report, 1–20.

  36. Holst-Jensen, A., Spilsberg, B., Arulandhu, A. J., Kok, E., Shi, J., & Zel, J. (2016). Application of whole genome shotgun sequencing for detection and characterization of genetically modified organisms and derived products. Analytical and Bioanalytical Chemistry, 408(17), 4595–4614.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

This work was supported by grants from the China National Transgenic Plant Special Fund (2016ZX08012-002, 2017ZX08013001-001) and the Programme of Introducing Talents of Discipline to Universities (111 Project, B14016).

Author information

Authors and Affiliations

Authors

Contributions

JS conceived and designed the experiments. KS, JW, and RL performed the experiments. KS, RL, DZ, and JS analyzed and interpreted data. KS and JS wrote the manuscript.

Corresponding author

Correspondence to Jianxin Shi.

Ethics declarations

Conflict of interest

The authors declare no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Siddique, K., Wei, J., Li, R. et al. Identification of T-DNA Insertion Site and Flanking Sequence of a Genetically Modified Maize Event IE09S034 Using Next-Generation Sequencing Technology. Mol Biotechnol 61, 694–702 (2019). https://doi.org/10.1007/s12033-019-00196-0

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12033-019-00196-0

Keywords

Navigation