Skip to main content
Log in

Synthetic sideromycins (skepticism and optimism): selective generation of either broad or narrow spectrum Gram-negative antibiotics

  • Published:
BioMetals Aims and scope Submit manuscript

Abstract

New or repurposed antibiotics are desperately needed since bacterial resistance has risen to essentially all of our current antibiotics, and few new antibiotics have been developed over the last several decades. A primary cause of drug resistance is the overuse of antibiotics that can result in alteration of microbial permeability, alteration of drug target binding sites, induction of enzymes that destroy antibiotics (i.e., β-lactamases) and even induction of efflux mechanisms. Research efforts are described that are designed to determine if the known critical dependence of iron assimilation by microbes for growth and virulence can be exploited for the development of new approaches to antibiotic therapy. Iron recognition and active transport relies on the biosyntheses and use of microbe-selective iron chelating compounds called siderophores. Several natural siderophore-antibiotic conjugates (sideromycins) have been discovered and studied. The natural sideromycins consist of an iron binding siderophore linked to a warhead that exerts antibiotic activity once assimilated by targeted bacteria. Inspired these natural conjugates, a combination of chemical syntheses, microbiological and biochemical studies have been used to generate semi-synthetic and totally synthetic sideromycin analogs. The results demonstrate that siderophores and analogs can be used for iron transport-mediated drug delivery (“Trojan Horse” antibiotics or sideromycins) and induction of iron limitation/starvation (development of new agents to block iron assimilation). While several examples illustrate that this approach can generate microbe selective antibiotics that are active in vitro, the scope and limitations of this approach, especially related to development of resistance, siderophore based molecular recognition requirements, appropriate linker and drug choices, will be described.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19
Fig. 20
Fig. 21
Fig. 22
Fig. 23

Similar content being viewed by others

References

  • Abergel RJ, Zawadzka AM, Hoette TM, Raymond KN (2009) Enzymatic hydrolysis of trilactone siderophores: where chiral recognition occurs in enterobactin and bacillibactin iron transport. J Am Chem Soc 131:12682–12692

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Akinobu I, Nishikawa T, Matsumoto S, Yoshizawa H, Sato T, Nakamura R, Tsuji M, Yamano Y (2016) Siderophore cephalosporin cefiderocol utilizes ferric iron transporter systems for antibacterial activity against Pseudomonas aeruginosa. Antimicrob Agents Chemother 60:7396–7401

    Google Scholar 

  • Barbachyn MR, Tuominen TC (1990) Synthesis and structure-activity relationships of monocarbams leading to U-78608. J Antibiot 43:1199–1202

    Article  CAS  Google Scholar 

  • Benz G, Schroder T, Kurz J, Wünsche C, Karl W, Steffens G, Pfitzner J, Schmidt D (1982) Constitution of the deferriform of the albomhcins δ1, δ2 and ε. Angew Chem Int Ed Engl 21:527–528

    Article  Google Scholar 

  • Bluhm ME, Kim SS, Dertz EA, Raymond KN (2002) Corynebactin and enterobactin: related siderophores of opposite chirality. J Am Chem Soc 124:2436–2437

    Article  CAS  PubMed  Google Scholar 

  • Boyd DB, Eigenbrot C, Indelicato JM, Miller MJ, Pasini CE, Woulfe SR (1987) Heteroatom activated ß-lactam antibiotics: considerations of differences in biological activity of [[3(S)-(acylamino)-2-oxo-1-azetidinyl]-oxy]acetic acids (Oxamazins) and the corresponding sulfur analogues (Thiamazins). J Med Chem 30:528–536

    Article  CAS  PubMed  Google Scholar 

  • Braun V, Pramanik A, Gwinner T, Koberle M, Bohn E (2009) Sideromycins: tool and antibiotics. Biometals 22:3–13

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Breuer H, Bisacchi GS, Drossard J-M, Ermann P, Koster WH, Kronenthal D, Juester P, Linder KR, Straub H, Treuner UD, Zahler R (1985) Structure-activity relationships among sulfonylaminocarbonyl activated mono bactams leading to SQ-83,360. Program and Abstracts of the 25th Interscience Conference on Antimicrobial Agents and Chemotherapy, No 371, p. 158, Minneapolis, MN, Sept 29-Oct 2, 1985

  • Brochu A, Brochu N, Nicas TI, Parr TR, Minnick AA, Dolence EK, McKee JA, Miller MJ, Lavoie MC, Malouin F (1992) Modes of action and inhibitory activities of new siderophore-β-lactam conjugates that use specific iron uptake pathways for entry into bacteria. Antimicrob Agents Chemother 36:2166–2175

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Budzikiewicz H (2001) Siderophore-antibiotic conjugates used as trojan horses aginst Pseudomonas aeruginosa. Curr Top Med Chem 1:73–82

    Article  CAS  PubMed  Google Scholar 

  • Bush K, Freudenberger JS, Sykes RB (1982) Interaction of azthreonam and related monobactams with β-lactamases from Gram-negative bacteria. Antimicrob Agents Chemother 22:414–420

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bush K, Courvalin P, Dantas G, Davies J, Eisenstein B, Huovinen P, Jacoby GA, Kishony R, Kreiswirth BN, Kutter E, Lerner SA, Levy S, Lewis K, Lomovskaya O, Miller JH, Mobashery S, Piddock LJ, Projan S, Thomas CM, Tomasz A, Tulkens PM, Walsh TR, Watson JD, Witkowski J, Witte W, Wright G, Yeh P, Zgurskaya HI (2011) Tackling antibiotic resistance. Nat Rev Microbiol 9:894–896

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Calvopiña K, Umland K-D, Rydzik AM, Hinchliffe P, Brem J, Spencer J, Schofield CJ, Avisona MB (2016) Sideromimic modification of lactivicin dramatically increases potency against extensively drug-resistant Stenotrophomonas maltophilia clinical isolates. Antimicrob Agents Chemother 60:4170–4175

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Carosso S, Liu R, Miller PA, Hecker SJ, Glinka T, Miller MJ (2017) Methodology for monobactam diversification: syntheses and studies of 4-thiomethyl substituted β-lactams with activity against Gram-negative bacteria, including carbapenemase producing acinetobacter baumannii. J Med Chem 60:8933–8944

    Article  CAS  PubMed  Google Scholar 

  • Cimarusti CM, Sykes RB (1984) Monocyclic β-lactam antibiotics. Med Res Rev 4:17–20

    Article  Google Scholar 

  • McKenna M https://www.wired.com/2014/12/oneill-rpt-amr/ (accessed January 7, 2019)

  • Crosa JH, Mey AR, Payne SM (2004) Iron transport in bacteria. ASM Press, Washington, DC. ISBN 1-55581-292-9

    Book  Google Scholar 

  • Cuıv PO, Clarke P, O’Connell M (2006) Identification and characterization of an iron-regulated gene, chtA, required for the utilization of the xenosiderophores aerobactin, rhizobactin 1021 and schizokinen by Pseudomonas aeruginosa. Microbiology 152:945–954

    Article  CAS  PubMed  Google Scholar 

  • Cusnir R, Imberti C, Hider RC, Blower PJ, Ma MT (2017) Hydroxypyridinone chelators: from iron scavenging to radiopharmaceuticals for pet imaging with gallium-68. Int J Mol Sci 18:116–139

    Article  CAS  PubMed Central  Google Scholar 

  • Dayan I, Libman J, Agi Y, Shanzer A (1993) Chiral siderophore analogs: ferrichrome. Inorg Chem 32:1467–1475

    Article  CAS  Google Scholar 

  • Dolence EK, Minnick AA, Miller MJ (1990) N5-acetyl-N5-hydroxy-l-ornithine-derived siderophore-carbacephlosporin β-lactam conjugates: iron transport mediated drug delivery. J Med Chem 33:461–464

    Article  CAS  PubMed  Google Scholar 

  • Dolence EK, Lin C-E, Miller MJ (1991a) Synthesis and siderophore activity of albomycin-like peptides derived from N 5-Acetyl-N 5-hydroxy-L-orinithine. J Med Chem 34:956–968

    Article  CAS  PubMed  Google Scholar 

  • Dolence EK, Minnick AA, Lin C-E, Miller MJ (1991b) Synthesis and siderophore and antibacterial activity of N5-Acetyl-N5-hydroxy-l-ornithine-derived siderophore-β-lactam conjugates: iron-transport-mediated drug delivery. J Med Chem 34:968–978

    Article  CAS  PubMed  Google Scholar 

  • Dong L, Roosenberg JM, Miller MJ (2002) Total synthesis of desferrisalmycin B. J Am Chem Soc 124:15001–15005

    Article  CAS  PubMed  Google Scholar 

  • Fisher JF, Mobashery S (2016) Endless resistance. Endless antibiotics? Med Chem Comm 7:37–49

    Article  CAS  Google Scholar 

  • Flanagan ME, Brickner SJ, Lall M, Casavant J, Deschenes L, Finegan SM, George DM, Granskog K, Hardink JR, Huband MD, Hoang T, Lamb L, Marra A, Mitton-Fry M, Mueller JP, Mullins LM, Noe MC, O’Donnell JP, Pattavina D, Penzien JP, Schuff BP, Sun S, Whipple DA, Young J, Gootz TD (2011) Preparation, Gram-negative antibacterial activity, and hydrolytic stability of novel siderophore-conjugated monocarbam diols. ACS Med Chem Lett 2:385–390

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Furst AL, Francis MB (2019) Impedance-based detection of bacteria. Chem Rev 119:700–726

    Article  CAS  PubMed  Google Scholar 

  • Gause GF (1955) Recent studies on albomycin, a new antibiotic. BMJ 2:1177

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ghosh M, Miller MJ (1996) Synthesis and In vitro antibacterial activity of spermidine-based mixed catechol- and hydroxamate-containing siderophore-vancomycin conjugates. Bioorg Med Chem 4:43–48

    Article  CAS  PubMed  Google Scholar 

  • Ghosh A, Ghosh M, Niu C, Malouin F, Möllmann U, Miller MJ (1996) Iron transport-mediated drug delivery using mixed-ligand siderophore-β-lactam conjugates. Chem Biol 3:1011–1019

    Article  CAS  PubMed  Google Scholar 

  • Ghosh M, Miller PA, Möllmann U, Claypool WD, Schroeder VA, Wolter WR, Suckhow M, Yu H, Li S, Huang W, Zajicek J, Miller MJ (2017) Targeted antibiotic delivery: selective siderophore conjugation with daptomycin confers potent activity against multi-drug resistant Acinetobacter baumannii both in vitro and in vivo. J Med Chem 60:4577–4583

    Article  CAS  PubMed  Google Scholar 

  • Ghosh M, Lin Y-M, Miller PA, Möllmann U, Boggess WC, Miller MJ (2018) Siderophore conjugates of daptomycin are potent inhibitors of carbapenem resistant strains of Acinetobacter baumannii. ACS Infect Dis 4:1529–1535

    Article  CAS  PubMed  Google Scholar 

  • Han S, Zaniewski RP, Marr ES, Lacey BM, Tomaras AP, Evdokimov A, Miller RJ, Shanmugasundaram V (2002) Structural basis for effectiveness of siderophore-conjugated monocarbams against clinically relevant strains of pseudomonas. PNAS 107:22002–22007

    Article  Google Scholar 

  • Heinisch L, Gebhardt P, Heidersbach R, Reissbrodt R, Möllmann U (2002a) New synthetic catecholate-type siderophores with triamine backbone. Biometals 15:133–144

    Article  CAS  PubMed  Google Scholar 

  • Heinisch L, Wittmann S, Stoiber T, Berg A, Ankel-Fuchs D, Möllmann U (2002b) Highly antibacterial active aminoacyl penicillin conjugates with acylated bis-catecholate siderophores based on secondary diamino acids and related compounds. J Med Chem 45:3032–3040

    Article  CAS  PubMed  Google Scholar 

  • Hennard C, Truong QC, Desnottes JF, Paris JM, Moreau NJ, Abdallah MA (2001) Synthesis and activities of pyoverdin-quinolone adducts: a prospective approach to a specific therapy against Pseudomonas aeruginosa. J Med Chem 44:2139–2151

    Article  CAS  PubMed  Google Scholar 

  • Hider RC, Kong X (2010) Chemistry and biology of siderophores. Nat Prod Rep 27:637–657

    Article  CAS  PubMed  Google Scholar 

  • https://www.bbc.com/news/health-45983320 (accessed January 15, 2019)

  • Hu J, Ghosh M, MillerMJ Bohn P (2019) Whole-cell biosensing by siderophore-based molecular recognition and localized surface plasmon resonance. Anal Methods 11:296–302

    Article  CAS  PubMed  Google Scholar 

  • Ito A, Kohira N, Bouchillon SK, West J, Rittenhouse S, Sader HS, Rhomberg PR, Jones RN, Yoshizawa H, Nakamura R, Tsuji M, Yamano Y (2016) In vitro antimicrobial activity of S-649266, a catechol substituted siderophore cephalosporin, when tested against non-fermenting gram-negative bacteria. J Antimicrob Chemother 71:670–677

    Article  CAS  PubMed  Google Scholar 

  • Ito-Horiyama T, Ishii Y, Ito A, Sato T, Nakamura R, Fukuhara N, Tsuji M, Yamano Y, Yamaguchi K, Tateda K (2016) Stability of novel siderophore cephalosporin S-649266 against clinically relevant carbapenemases. Antimicrob Agents Chemother 60:4384–4386

    Article  PubMed  PubMed Central  Google Scholar 

  • Ji C, Miller MJ (2012) Chemical syntheses and in vitro antibacterial activity of two desferrioxamine B-ciprofloxacin conjugates with potential esterase and phosphatase triggered drug release linkers. Bioorg Med Chem 20:3828–3836

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ji C, Miller PA, Miller MJ (2012) Iron transport-mediated drug delivery: practical syntheses and in vitro antibacterial studies of Tris-catecholate siderophore-aminopenicillin conjugates reveals selectively potent anti-pseudomonal activity. J Am Chem Soc 134:9898–9901

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ji C, Miller PA, Miller MJ (2015) Syntheses and antibacterial activity of N-acylated ciprofloxacin derivatives based on the trimethyl lock. ACS Med Chem Lett. 6:707–710

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Katsu K, Kitoh K, Inoue M, Mitsuhashi S (1982) In vitro antibacterial activity of E-0702, a new semisynthetic cephalosporin. Antimicrob Agents Chemother 22:181–185

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kinzel O, Tappe R, Gerus I, Budzikiewicz H (1998) The synthesis and antibacterial activity of two pyoverdin-ampicillin conjugates, entering Pseudomonas aeruginosa via the pyoverdin-mediated iron uptake pathway. J Antibiot 51:499–507

    Article  CAS  Google Scholar 

  • Knüsel F, Nüesch J (1965) Mechanism of action of sideromycins. Nature 206:674–676

    Article  PubMed  Google Scholar 

  • Kohira N, West J, Ito A, Ito-Horiyama T, Nakamura R, Sato T, Rittenhouse S, Tsuji M, Yamano Y (2016) In vitro antimicrobial activity of siderophore cephalosporin S-649266 against enterobacteriaceae clinical isolates including carbapenem-resistant strains. Antimicrob Agents Chemother 60:729–734

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lax E (2004) The mold in Dr. Florey’s coat The story of the penicillin miracle. Henry Holt and Co., New York, p 307

  • Liu R, Miller PA, Vakulenko SB, Stewart NK, Boggess WC, Miller MJ (2018) A synthetic dual drug sideromycin induces gram-negative bacteria to commit suicide with a gram-positive antibiotic. J Med Chem 61:3845–3854

    Article  CAS  PubMed  Google Scholar 

  • Macheboeuf P, Fischer DS, Brown T Jr, Zervosen A, Luxen A, Joris B, Dessen A, Schofield CJ (2007) Structural and mechanistic basis of penicillin-binding protein inhibition by lactivicins. Nat Chem Biol 3:565–569

    Article  CAS  PubMed  Google Scholar 

  • Maejima T, Inoue M, Mitsuhashi S (1991) The role of cefotaxime in the treatment of surgical infection. Antimicrob Agents Chemother 52:104–110

    Article  Google Scholar 

  • McKee JA, Sharma SK, Miller MJ (1991) Iron transport mediated drug delivery systems: synthesis and antibacterial activity of spermidine- and lysine-based siderophore-β-lactam conjugates. Bioconj Chem 2:281–291

    Article  CAS  Google Scholar 

  • McPherson CJ, Aschenbrenner LM, Lacey BM, Gahnoe KC, Lemmon MM, Finegan SM, Adakamalla B, O’Donnell JP, Mueller JP, Tomaras AP (2012) Clinically relevant gram-negative resistance mechanisms have no effect on the efficacy of MC-1, a novel siderophore-conjugated monocarbam. Antimicrob Agents Chemother 56:6334–6342

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Miethke M, Marahiel M (2007) Siderophore-based iron acquisition and pathogen control. Microbiol Mol Biol Rev 71:413–451

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Miller MJ (1989) Syntheses and therapeutic potential of hydroxamic acid based siderophores and analogues. Chem Rev 89:1563–1579

    Article  CAS  Google Scholar 

  • Miller MJ, Malouin F (1993) Microbial iron chelators as drug delivery agents: the rational design and synthesis of siderophore-drug conjugates. Acc Chem Res 26:241–249

    Article  CAS  Google Scholar 

  • Miller MJ, Malouin F (1994) Siderophore-mediated drug delivery: the design, synthesis, and study of siderophore-antibiotic and antifungal conjugates. In: Bergeron RJ, Brittenham GM (eds) The development of iron chelators for clinical use. CRC, Boca Raton, pp 275–306

    Google Scholar 

  • Miller MJ, Zhu H, Xu Y, Wu C, Walz AJ, Vergne A, Moraski G, Minnick AA, McKee-Dolence J, Dolence EK, Hu J, Fennell K, Franzblau S, Malouin F, Möllmann U (2009) Utilization of microbial iron assimilation processes for the development of new antibiotics and inspiration for the design of new anticancer agents. Biometals 22:61–75

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Miller MJ, Walz AJ, Zhu H, Wu C, Moraski G, Möllmann U, Tristani EM, Crumbliss AL, Ferdig MT, Checkley L, Edwards RL, Boshoff HI (2011) J Am Chem Soc 133:2076–2079

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Minnick AA, McKee JA, Dolence EK, Miller MJ (1992) Iron transport-mediated antibacterial activity of and development of resistance to hydroxamate and catechol siderophore-carbacephalosporin conjugates. Antimicrob Agents Chemother 36:840–850

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Mislin GL, Schalk IJ (2014) Siderophore-dependent iron uptake systems as gates for antibiotic Trojan horse strategies against Pseudomonas aeruginosa. Metallomics 6:408–420

    Article  CAS  PubMed  Google Scholar 

  • Mochizuki H, Yamada H, Oikawa Y, Murakami K, Ishiguro J, Kosuzume H, Aizawa N, Mochida E (1988) Bactericidal activity of M1469 enhanced in low-iron environments. Antimicrob Agents Chemother 32:1648–1654

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Möllmann U, Heinisch L, Bauernfeind A, Köhler T, Ankel-Fuchs D (2009) Siderophores as drug delivery agents: application of the ‘‘Trojan Horse’’ strategy. Biometals 22:615–624

    Article  CAS  PubMed  Google Scholar 

  • Nakagawa S, Sanada M, Matsuda K, Hashizume T, Asahi Y, Ushijima R, Ohtake N, Tanaka N (1989) In vitro and in vivo antibacterial activities of BO-1341, a new antipseudomonal cephalosporin. Antimicrob Agents Chemother 33:1423–1427

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Neilands JB (1995) Siderophores: structure and function of microbial iron transport compounds. J Biol Chem 270:26723–26726

    Article  CAS  PubMed  Google Scholar 

  • Neumann W, Sassone-Corsi M, Raffatellu M, Nolan EM (2018) Esterase-catalyzed siderophore hydrolysis activates an enterobactin-ciprofloxacin conjugate and confers targeted antibacterial activity. J Am Chem Soc 140:5193–5201

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Nozaki Y, Katayama N, Harada S, Ono H, Okazaki H (1989) Lactivicin, a naturally occurring non-β-lactam antibiotic having β-lactam like action: biological activities and mode of action. J Antibiot (Tokyo) 42:84–93

    Article  CAS  Google Scholar 

  • Ohi N, Aoki B, Shinozaki T, Moro K, Noto T, Nehashi T, Okazaki H, Matsunaga I (1986) Semisynthetic β-lactam antibiotics I. Synthesis and antibacterial activity of new ureidopenicillin derivatives having catechol moieties. J Antibiot 39:230–241

    Article  CAS  Google Scholar 

  • Page MG, Dantier C, Desarbre E (2010) In vitro properties of BAL30072, a novel siderophore sulfactam with activity against multiresistant gram negative bacilli. Antimicrob Agents Chemother 54:2291–2302

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Pogliano J, Pogliano N, Silverman JA (2012) Daptomycin-mediated reorganization of membrane architecture causes mislocalization of essential cell division proteins. J Bacteriol 194:4494–4504

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Poole K, McKay GA (2003) Iron acquisition and its control in Pseudomonas aeruginosa: many roads lead to Rome. Front Biosci 8:661–686

    Article  Google Scholar 

  • Portsmouth S, van Veenhuyzen D, Echols R, Machida M, Ferreira JCA, Ariyasu M, Tenke P, Nagata TD (2018) Cefiderocol versus imipenem-cilastatin for the treatment of complicated urinary tract infections caused by Gram-negative uropathogens: a phase 2, randomised, double-blind, non-inferiority trial. The Lancet Infect Diseases 18:1319–1328

    Article  CAS  Google Scholar 

  • Pramanik A, Braun V (2006) Albomycin uptake via a ferric hydroxamate transport system of Streptococcus pneumoniae R6. J Bacteriol 188:3878–3886

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Rex JH (2014) ND4BB: addressing the antimicrobial resistance crisis. Nat Rev Microbiol 12:231–232

    Article  CAS  Google Scholar 

  • Rivault F, Liebert C, Burger A, Hoegy F, Abdallah MA, Schalk IJ, Mislin GLA (2007) Synthesis of pyochelin-norfloxacin conjugates. Bioorg Med Chem Lett 17:640–644

    Article  CAS  PubMed  Google Scholar 

  • Sackmann W, Reusser P, Neipp L, Dradolfer F, Gross F (1962) Ferrimycin A, a new iron-containing antibiotic. Antib Chemo 12:34–38

    CAS  Google Scholar 

  • Schalk IJ (2018a) A trojan-horse strategy including a bacterial suicide action for the efficient use of a specific gram-positive antibiotic on gram-negative bacteria. J Med Chem 61:3842–3844

    Article  CAS  PubMed  Google Scholar 

  • Schalk IJ (2018b) Siderophore antibiotic conjugates: exploiting iron uptake to deliver drugs into bacteria. Clin Microbiol Infect 24:801–802

    Article  CAS  PubMed  Google Scholar 

  • Schalk IJ, Guillon L (2013) Fate of ferrisiderophores after import across bacterial outer membranes: different iron release strategies are observed in the cytoplasm or periplasm depending on the siderophore pathways. Amino Acids 5:1267–1277

    Article  CAS  Google Scholar 

  • Schnabelrauch M, Wittmann S, Rahn K, Möllman U, Reissbrodt R, Heinisch L (2000) New synthetic catecholate-type siderophores based on amino acids and dipeptides. Biometals 13:333–348

    Article  CAS  PubMed  Google Scholar 

  • Shanzer A, Libman J, Yakirevitch P, Hadar Y, Chen Y, Jurkevitch E (1993) Siderophore-mediated microbial iron(III) uptake: an exercise in chiral recognition. Chirality 5:359–365

    Article  CAS  Google Scholar 

  • Snow GA (1970) Mycobactins: iron-chelating growth factors from mycobacteria. Bacteriol Rev 34:99–125

    CAS  PubMed  PubMed Central  Google Scholar 

  • Starr J, Brown MF, Aschenbrenner L, Caspers N, Che Y, Gerstenberger BS, Huband M, Knafels JD, Lemmon MM, Li C, McCurdy SP, McElroy E, Rauckhorst MR, Tomaras AP, Young JA, Zaniewski RP, Shanmu-Gasundaram V, Han S (2014) Siderophore receptor-mediated uptake of lactivicin analogues in Gram-negative bacteria. J Med Chem 57:3845–3855

    Article  CAS  PubMed  Google Scholar 

  • Tacconelli E (2019) Global priority list of antibiotic-resistant bacteria to guide research, discovery, and development of new antibiotics. www.who.int/medicines/publications/WHO-PPL-Short_Summary_25Feb-ET_NM_WHO.pdf (accessed February 8, 2019)

  • Tamura N, Matsushita Y, Kawano Y, Yoshioka K (1990) Synthesis and antibacterial activity of lactivicin derivatives. Chem Pharm Bull (Tokyo) 38:116–122

    Article  CAS  Google Scholar 

  • Taylor SD, Palmer M (2016) The action mechanism of daptomycin. Bioorg Med Chem 24:6253–6268

    Article  CAS  PubMed  Google Scholar 

  • Tomaras AP, Crandon JL, McPherson CJ, Nicolau P (2015) Potentiation of antibacterial activity of the MB-1 siderophore- monobactam conjugate using an efflux pump inhibitor. Antimicrob Agents Chemother 59:2439–2442

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Vertesy L, Aretz W, Fehlhabe HW, Kogler H (1995) 3.Salmycin A-D, Antibiotika aus Streptomyces violaceus, DSM 8286, mit Siderophor-Aminoglycosid-Struktur. Helv Chim Acta 78:46–60

    Article  CAS  Google Scholar 

  • Walsh CT, Wencewicz TA (2016) Antibiotics: challenges, mechanisms, opportunities. ASM Press, Washington, DC

    Google Scholar 

  • Watanabe NA, Nagasu T, Katsu K, Kitoh K (1987) E-0702, a new cephalosporin, is incorporated into Escherichia coli cells via the tonB-dependent iron transport system. Antimicrob Agents Chemother 31:497–504

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wencewicz TA, Miller MJ (2013) Biscatecholate–monohydroxamate mixed ligand siderophore–carbacephalosporin conjugates are selective sideromycin antibiotics that target acinetobacter baumannii. J Med Chem 56:4044–4052

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wencewicz TA, Miller MJ (2017) Sideromycins as pathogen targeted antibiotics. Top Med Chem 26:151–184

    Article  CAS  Google Scholar 

  • Wencewicz TA, Möllmann U, Long TE, Miller MJ (2009) Is drug release necessary for antimicrobial activity of siderophore-drug conjugates? Syntheses and biological studies of the naturally occurring salmycin “Trojan Horse” antibiotics and synthetic desferridanoxamine-antibiotic conjugates. Biometals 22:633–648

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Winkelmann G, Braun V (1981) Stereoselective recognition of ferrichrome by fungi and bacteria. FEMS Microbiol Lett 11:237–241

    Article  CAS  Google Scholar 

  • Wittmann S, Schnabelrauch M, Scherlitz-Hofmann I, Möllmann U, Ankel-Fuchs D, Heinisch L (2002) New synthetic siderophores and their β-lactam conjugates based on diamino acids and dipeptides. Bioorg Med Chem 10:1659–1670

    Article  CAS  PubMed  Google Scholar 

  • Wittmann S, Heinisch L, Scherlitz-Hofmann I, Stoiber T, Ankel-Fuchs D, Möllmann U (2004) Catecholates and mixed catecholate hydroxamates as artificial siderophores for mycobacteria. Biometals 17:53–64

    Article  CAS  PubMed  Google Scholar 

  • Zahner H, Diddens H, Keller-Schierlein W, Nageli HU (1977) Some experiments with semisynthetic sideromycins. Jpn J Antibiot 30:201–206

    PubMed  Google Scholar 

  • Zheng NT, Nolan EM (2014) Enterobactin-mediated delivery of β-lactam antibiotics enhances antibacterial activity against pathogenic Escherichia coli. J Am Chem Soc 136:9677–9691

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zheng T, Nolan EM (2015) Evaluation of (acyloxy)alkyl ester linkers for antibiotic release from siderophore–antibiotic conjugates. Bioorg Med Chem Lett 25:4987–4991

    Article  CAS  PubMed  Google Scholar 

  • Zheng T, Bullock JL, Nolan EM (2012) Siderophore-mediated cargo delivery to the cytoplasm of escherichia coli and Pseudomonas aeruginosa: syntheses of monofunctionalized enterobactin scaffolds and evaluation of enterobactin-cargo conjugate uptake. J Am Chem Soc 134:18388–18400

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

Early support for the authors’ siderophore and sideromycin studies at the University of Notre Dame was provided by the NIH. Subsequent support through Hsiri Therapeutics was provided by the Department of Defense (W81XWH-12-2-0015) and through the generosity of Dr. William Claypool. MJM thanks all the coworkers at the University of Notre Dame and collaborators world-wide throughout the years for all the interest in siderophores, sideromycins and related studies.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Marvin J. Miller.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lin, YM., Ghosh, M., Miller, P.A. et al. Synthetic sideromycins (skepticism and optimism): selective generation of either broad or narrow spectrum Gram-negative antibiotics. Biometals 32, 425–451 (2019). https://doi.org/10.1007/s10534-019-00192-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10534-019-00192-6

Keywords

Navigation