Skip to main content
Log in

Risk and safety considerations 2: genetic variations and potential risks—traditional breeding and genome editing

  • Proceedings Paper
  • Published:
Transgenic Research Aims and scope Submit manuscript

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

References

  • Bibikova M, Golic M, Golic KG, Carroll D (2002) Targeted chromosomal cleavage and mutagenesis in drosophila using zinc-finger nucleases. Genetics 161:1169–1175

    CAS  PubMed  PubMed Central  Google Scholar 

  • Chen C-H, Sassa Y, Suda E, Watanabe KN (2006) Biosafety system frameworks for living modified organisms in Japan and Taiwan. Plant Biotechnol 23:539–546

    Article  Google Scholar 

  • Christian M, Cermak T, Doyle EL, Schmidt C, Zhang F, Hummel A et al (2010) Targeting DNA double-strand breaks with TAL effector nucleases. Genetics 186:757–761

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Duensing N, Sprink T, Parrott WA, Fedorova M, Lema MA, Wolt JD et al (2018) Novel features and considerations for ERA and regulation of crops produced by genome editing. Front Bioeng Biotechnol 6:79

    Article  PubMed  PubMed Central  Google Scholar 

  • Epinat J-C, Arnould S, Chames P, Rochaix P, Desfontaines D, Puzin C et al (2003) A novel engineered meganuclease induces homologous recombination in yeast and mammalian cells. Nucl Acids Res 31(11):2952–2962

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Food Safety Commission of Japan (2017) Report on food safety monitoring (in Japanese). p 6. http://www.fsc.go.jp/monitor/monitor_report.data/28kadai-gaiyo.pdf. Accessed 6 June 2019

  • Jinek M, Chylinski K, Fonfara I, Hauer M, Doudna JA, Charpentier E (2012) A programmable dual-RNA-guided DNA endonuclease in adaptive bacterial immunity. Science 337:816–821

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Karkute SG, Singh AK, Gupta OP, Singh PM, Singh B (2017) CRISPR/Cas9 mediated genome engineering for improvement of horticultural crops. Front Plant Sci 8:1635

    Article  PubMed  PubMed Central  Google Scholar 

  • Kawahara Y, de la Bastide M, Hamilton JP, Kanamori H, McCombie WR, Ouyang S et al (2013) Improvement of the Oryza sativa Nipponbare reference genome using next generation sequence and optical map data. Rice 6:4

    Article  PubMed  PubMed Central  Google Scholar 

  • Kim YG, Cha J, Chandrasegaran S (1996) Hybrid restriction enzymes: zinc finger fusions to Fok I cleavage domain. Proc Natl Acad Sci USA 93(3):1156–1160

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ricroch A, Clairand P, Harwood W (2017) Use of CRISPR systems in plant genome editing: toward new opportunities in agriculture. Emerg Top Life Sci 1(2):169–182

    Article  PubMed  PubMed Central  Google Scholar 

  • Rouet P, Smih F, Jasin M (1994) Introduction of double-strand breaks into the genome of mouse cells by expression of a rare-cutting endonuclease. Mol Cell Biol 14:8096–8106

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sakai H, Lee SS, Tanaka T, Numa H, Kim J, Kawahara Y, Wakimoto H et al (2013) Rice annotation project database (RAP-DB): an integrative and interactive database for rice genomics. Plant Cell Physiol 54(2):e6

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ueki J, Morioka S, Komari T, Kumashiro T (1995) Purification and characterization of phospholipase D (PLD) from (Oryza sativa L.) and cloning of cDNA for PLD from rice and maize (Zea mays L.). Plant Cell Physiol 36:903–914

    Article  CAS  PubMed  Google Scholar 

  • United States Department of Agriculture, Animal and Plant Health Inspection Service (2016) Regulated article letters of inquiry. https://www.aphis.usda.gov/aphis/ourfocus/biotechnology/am-i-regulated/Regulated_Article_Letters_of_Inquiry. Accessed 6 June 2019

  • Whelan A, Lema MA (2015) Regulatory framework for gene editing and other new breeding techniques (NBTs) in Argentina. GM Crops Food 6:253–265

    Article  PubMed  PubMed Central  Google Scholar 

  • Yang H, Tabei Y, Kamada H, Kayano T, Takaiwa F (1997) Detection of somaclonal variation in cultured rice cells using digoxigenin-based random amplified polymorphic DNA. Plant Cell Rep 18(6):520–526

    Article  Google Scholar 

Download references

Acknowledgements

This report summarized the results of Drs. Mai Tsuda, Masao Ohshima (University of Tsukuba), Takeshi Itoh (Advanced Analysis Center, NARO), Reona Takabatake and Kazumi Kitta (Food Research Institute, NARO) and Prof. Ryo Ohsawa (University of Tsukuba). I am grateful to these researchers for providing their data. I would also like to thank Dr. Yoko Takasu for helpful advice. This work was supported by the Cabinet Office, Government of Japan, Cross-ministerial Strategic Innovation Promotion Program (SIP) and by subsidy of NARO.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yutaka Tabei.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Disclaimer: The opinions expressed and arguments employed in this paper are the sole responsibility of the author and do not necessarily reflect those of the OECD or of the governments of its Member countries.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Tabei, Y. Risk and safety considerations 2: genetic variations and potential risks—traditional breeding and genome editing. Transgenic Res 28 (Suppl 2), 119–124 (2019). https://doi.org/10.1007/s11248-019-00144-3

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11248-019-00144-3

Navigation