Skip to main content

Advertisement

Log in

Transcriptomic analysis to affirm the regulatory role of long non-coding RNA in horn cancer of Indian zebu cattle breed Kankrej (Bos indicus)

  • Original Article
  • Published:
Functional & Integrative Genomics Aims and scope Submit manuscript

Abstract

Long non-coding RNA (lncRNA) was previously considered as a non-functional transcript, which now established as part of regulatory elements of biological events such as chromosome structure, remodeling, and regulation of gene expression. The study presented here showed the role of lncRNA through differential expression analysis on cancer-related coding genes in horn squamous cell carcinoma of Indian zebu cattle. A total of 10,360 candidate lncRNAs were identified and further analyzed for its coding potential ability using three tools (CPC, CPAT, and PLEK) that provide 8862 common lncRNAs. Pfam analysis of these common lncRNAs gave 8612 potential candidates for lncRNA differential expression analysis. Differential expression analysis showed a total of 59 significantly differentially expressed genes and 19 lncRNAs. Pearson’s correlation analysis was used to identify co-expressed mRNA-lncRNAs to established relation of the regulatory role of lncRNAs in horn cancer. We established a positive relation of seven upregulated (XLOC_000016, XLOC_002198, XLOC_002851, XLOC_ 007383, XLOC_010701, XLOC_010272, and XLOC_011517) and one downregulated (XLOC_011302) lncRNAs with eleven genes that are related to keratin family protein, keratin-associated protein family, cornifelin, corneodesmosin, serpin family protein, and metallothionein that have well-established role in squamous cell carcinoma through cellular communication, cell growth, cell invasion, and cell migration. These biological events were found to be related to the MAPK pathway of cell cycle regulation indicating the role of lncRNAs in manipulating cell cycle regulation during horn squamous cell carcinomas that will be useful in identifying molecular portraits related to the development of horn cancer.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

Data availability

All data generated or analyzed during this study are included in this published article as supplementary information files. In addition, the datasets generated and analyzed during the current study are available in the NCBI-SRA with bioproject number PRJNA497667 and biosample numbers as given in supplementary data. The following link can be used by the reviewer to access data as a part of data share at NCBI-SRA that are publically available. https://www.ncbi.nlm.nih.gov/bioproject/?term=PRJNA497667

Abbreviations

HN:

horn normal

HC:

horn cancer

CPC:

Coding Potential Calculator

CPAT:

Coding-Potential Assessment Tools

PLEK:

predictor of long non-coding RNAs and messenger RNAs based on an improved K-mer scheme

lncRNA:

long non-coding RNA

FPKM:

fragments per kilobase of transcripts per millions mapped reads

KEGG:

Kyoto Encyclopedia of Genes and Genomes

References

  • Asadzadeh-Aghdaei H, Zali MR, Bonad MA et al (2018) The application of gene expression profiling in predictions of occult lymph node metastasis in colorectal cancer patients. Biomedicines 6:27

    PubMed Central  Google Scholar 

  • Baruzzo G, Hayer KE, Kim EJ, Di Camillo B, FitzGerald GA, Grant GR (2017) Simulation-based comprehensive benchmarking of RNA-seq aligners. Nat Methods 14:135–139

    CAS  PubMed  Google Scholar 

  • Batista PJ, Chang HY (2013) Long noncoding RNAs: cellular address codes in development and disease. Cell 152:1298–1307

    CAS  PubMed  PubMed Central  Google Scholar 

  • Benesty J, Chen J, Huang Y, Cohen I (2009) Pearson correlation coefficient. In: Noise reduction in speech processing. Springer, Springer Topics in Signal Processing, vol 2. Springer, Berlin, Heidelberg, 37–40. https://doi.org/10.1007/978-3-642-00296-0_5

    Google Scholar 

  • Billerey C, Boussaha M, Esquerre D et al (2014) Identification of large intergenic non-coding RNAs in bovine muscle using next-generation transcriptomic sequencing. BMC Genomics 15:499

    PubMed  PubMed Central  Google Scholar 

  • Boldrup L, Gu X, Coates PJ et al (2017) Gene expression changes in tumor free tongue tissue adjacent to tongue squamous cell carcinoma. Oncotarget 8:19389

    PubMed  Google Scholar 

  • Burggraaf H (1935) Kanker aan de basis van de hoorns bij zebus, Horn-core disease of cattle. T Diergeneesk 62:1121-1136

  • Caballero J, Gilbert I, Fournier E, Gagné D, Scantland S, Macaulay A, Robert C (2015) Exploring the function of long non-coding RNA in the development of bovine early embryos. Reprod Fertil Dev 27:40–52

    CAS  Google Scholar 

  • Chattopadyay S, Jandrotia V, Iyer P (1982) Horn cancer in sheep. Indian Veterinary Journal 59:319–320

    Google Scholar 

  • Chidambaranathan Reghupaty S (2017) TAF2: a potential oncogene for hepatocellular carcinoma. Dessertation, Virginia Commonwealth University

  • Chiu H-S, Somvanshi S, Patel E et al (2018) Pan-cancer analysis of lncRNA regulation supports their targeting of cancer genes in each tumor context. Cell Rep 23:297–312.e12

  • Conesa A, Götz S, García-Gómez JM, Terol J, Talón M, Robles M (2005) Blast2GO: a universal tool for annotation, visualization and analysis in functional genomics research. Bioinformatics 21:3674–3676

    CAS  PubMed  Google Scholar 

  • Consortium IHGS (2004) Finishing the euchromatic sequence of the human genome. Nature 431:931

    Google Scholar 

  • Dalla Pozza E, Manfredi M, Brandi J, Buzzi A, Conte E, Pacchiana R, Cecconi D, Marengo E, Donadelli M (2018) Trichostatin A alters cytoskeleton and energy metabolism of pancreatic adenocarcinoma cells: an in depth proteomic study. J Cell Biochem 119:2696–2707

    CAS  PubMed  Google Scholar 

  • Damodaran S, Sundararaj A, Ramakrishnan R (1979) Horn cancer in bulls. The Indian Veterinary Journal 56:248–249

    CAS  PubMed  Google Scholar 

  • Dankert JT, Wiesehöfer M, Czyrnik ED, Singer BB, von Ostau N, Wennemuth G (2018) The deregulation of miR-17/CCND1 axis during neuroendocrine transdifferentiation of LNCaP prostate cancer cells. PLoS One 13:e0200472

    PubMed  PubMed Central  Google Scholar 

  • de Koning PJ, Kummer JA, de Poot SAH et al (2011) Intracellular serine protease inhibitor SERPINB4 inhibits granzyme M-induced cell death. PLoS One 6:e22645

    PubMed  PubMed Central  Google Scholar 

  • Do DN, Ibeagha-Awemu EM (2017) Non-coding RNA roles in ruminant mammary gland development and lactation. In: Current Topics in Lactation. InTech Open, 5. https://doi.org/10.5772/67194

    Google Scholar 

  • Dobin A, Davis CA, Schlesinger F, Drenkow J, Zaleski C, Jha S, Batut P, Chaisson M, Gingeras TR (2013) STAR: ultrafast universal RNA-seq aligner. Bioinformatics 29:15–21

    CAS  PubMed  Google Scholar 

  • Dong D, Mu Z, Zhao C, Sun M (2018) ZFAS1: a novel tumor-related long non-coding RNA. Cancer Cell Int 18:125

    PubMed  PubMed Central  Google Scholar 

  • Dziegiel P, Pula B, Kobierzycki C, Stasiolek M, Podhorska-Okolow M (2016) The role of metallothioneins in carcinogenesis Advances in Anatomy, Embryology and Cell Biology 218:1–117

  • Escalona M, Rocha S, Posada D (2016) A comparison of tools for the simulation of genomic next-generation sequencing data. Nat Rev Genet 17:459–469

    CAS  PubMed  PubMed Central  Google Scholar 

  • Flynn RA, Chang HY (2014) Long noncoding RNAs in cell-fate programming and reprogramming. Cell Stem Cell 14:752–761

    CAS  PubMed  PubMed Central  Google Scholar 

  • Ghosh S (2018) Epitopes of enzymes involved in sialylation with special reference to lung cancer. Research & reviews: a journal of life sciences 8:11–19

    CAS  Google Scholar 

  • Gładych M, Cylwa R, Kiełczewski K, Biecek P, Liloglou T, Mackiewicz A, Oleksiewicz U (2018) The expression signature of cancer-associated KRAB-ZNF factors identified in TCGA pan-cancer transcriptomic data. Mol Oncol 13:701–724

    Google Scholar 

  • Goff L, Trapnell C, Kelley D (2013) cummeRbund: Analysis, exploration, manipulation, and visualization of Cufflinks high-throughput sequencing data Rpackage version 2.26.0

  • Gupta R, Sadana J, Kuchroo V, Kalra D (1980) Horn cancer in an intact bull. The Veterinary Record 107:312

    CAS  Google Scholar 

  • Ho DW-H, Kai AK-L, Ng IO-L (2015) TCGA whole-transcriptome sequencing data reveals significantly dysregulated genes and signaling pathways in hepatocellular carcinoma. Front Med 9:322–330

    PubMed  Google Scholar 

  • Hon C-C, Ramilowski JA, Harshbarger J, Bertin N, Rackham OJL, Gough J, Denisenko E, Schmeier S, Poulsen TM, Severin J, Lizio M, Kawaji H, Kasukawa T, Itoh M, Burroughs AM, Noma S, Djebali S, Alam T, Medvedeva YA, Testa AC, Lipovich L, Yip CW, Abugessaisa I, Mendez M, Hasegawa A, Tang D, Lassmann T, Heutink P, Babina M, Wells CA, Kojima S, Nakamura Y, Suzuki H, Daub CO, de Hoon MJL, Arner E, Hayashizaki Y, Carninci P, Forrest ARR (2017) An atlas of human long non-coding RNAs with accurate 5′ ends. Nature 543:199–204

    CAS  PubMed  PubMed Central  Google Scholar 

  • Hu J, Gao Y, Zheng Y, Shang X (2018a) KF-finder: identification of key factors from host-microbial networks in cervical cancer. BMC Syst Biol 12:54

    PubMed  PubMed Central  Google Scholar 

  • Hu X, Zhai Y, Shi R et al (2018b) FAT1 inhibits cell migration and invasion by affecting cellular mechanical properties in esophageal squamous cell carcinoma. Oncol Rep 39:2136–2146

    CAS  PubMed  PubMed Central  Google Scholar 

  • Huang G-J, Luo M-S, Chen G-P, Fu M-Y (2018) MiRNA–mRNA crosstalk in laryngeal squamous cell carcinoma based on the TCGA database. Eur Arch Otorhinolaryngol 275:751–759

    PubMed  Google Scholar 

  • Ibeagha-Awemu EM, Do DN, Dudemaine P-L, Fomenky BE, Bissonnette N (2018) Integration of lncRNA and mRNA transcriptome analyses reveals genes and pathways potentially involved in calf intestinal growth and development during the early weeks of life. Genes 9:142

    PubMed Central  Google Scholar 

  • Izuhara K, Yamaguchi Y, Ohta S, Nunomura S, Nanri Y, Azuma Y, Nomura N, Noguchi Y, Aihara M (2018) Squamous cell carcinoma antigen 2 (SCCA2, SERPINB4): an emerging biomarker for skin inflammatory diseases. Int J Mol Sci 19:1102

    PubMed Central  Google Scholar 

  • Joshi B, Soni P, Fefar D, Ghodasara D, Prajapati K (2009) Epidemiological and pathological aspects of horn cancer in cattle of Gujarat. Indian J Field Vet 5:15–18

    Google Scholar 

  • Kanehisa M The KEGG database. In: ‘In Silico’ simulation of biological processes: Novartis Foundation Symposium 247, 2002. Wiley Online Library, pp 91–103

  • Karunanithi S, Levi L, DeVechhio J et al (2017) RBP4-STRA6 pathway drives cancer stem cell maintenance and mediates high-fat diet-induced colon carcinogenesis. Stem Cell Rep 9:438–450

    CAS  Google Scholar 

  • Kohl M, Wiese S, Warscheid B (2011) Cytoscape: software for visualization and analysis of biological networks. In: Data Mining in Proteomics. Springer, pp 291–303

  • Kong L, Zhang Y, Ye Z-Q, Liu X-Q, Zhao S-Q, Wei L, Gao G (2007) CPC: assess the protein-coding potential of transcripts using sequence features and support vector machine. Nucleic Acids Res 35:W345–W349

    PubMed  PubMed Central  Google Scholar 

  • Koringa PG, Jakhesara SJ, Bhatt VD, Patel AB, Dash D, Joshi CG (2013) Transcriptome analysis and SNP identification in SCC of horn in (Bos indicus) Indian cattle. Gene 530:119–126

    CAS  PubMed  Google Scholar 

  • Koufariotis LT, Chen Y-PP, Chamberlain A, Vander Jagt C, Hayes BJ (2015) A catalogue of novel bovine long noncoding RNA across 18 tissues. PLoS One 10:e0141225

    PubMed  PubMed Central  Google Scholar 

  • Kulkarni H (1953) Carcinoma of horn in bovines of Old Baroda State. Indian Vet J 29:415–421

    Google Scholar 

  • Kung JT, Colognori D, Lee JT (2013) Long noncoding RNAs: past, present, and future. Genetics 193:651–669

    CAS  PubMed  PubMed Central  Google Scholar 

  • Lamontagne S, Fortier A-M, Parent S, Asselin E, Cadrin M (2015) Interaction between keratin intermediate filament proteins K8/18 and cancer related signal transduction proteins in epithelial cells. AACR. https://doi.org/10.1158/1538-7445

  • Lee J, Ngeow J (2018) Inherited thyroid cancer. In: Evidence-Based Endocrine Surgery. Springer, pp 163–171

  • Lee CW, Lin SE, Tsai HI, Su PJ, Hsieh CH, Kuo YC, Sung CM, Lin CY, Tsai CN, Yu MC (2018) Cadherin 17 is related to recurrence and poor prognosis of cytokeratin 19-positive hepatocellular carcinoma. Oncol Lett 15:559–567

    PubMed  Google Scholar 

  • Li A, Zhang J, Zhou Z (2014) PLEK: a tool for predicting long non-coding RNAs and messenger RNAs based on an improved k-mer scheme. BMC Bioinf 15:311

    Google Scholar 

  • Liu X, Ding X, Li X, Jin C, Yue Y, Li G, Guo H (2017) An atlas and analysis of bovine skeletal muscle long noncoding RNAs. Anim Genet 48:278–286

    CAS  PubMed  Google Scholar 

  • Liu Z, Ye Q, Wu L, Gao F, Xie H, Zhou L, Zheng S, Xu X (2018) Metallothionein 1 family profiling identifies MT1X as a tumor suppressor involved in the progression and metastastatic capacity of hepatocellular carcinoma. Mol Carcinog 57:1435–1444

    CAS  PubMed  Google Scholar 

  • Livak KJ, Schmittgen TD (2001) Analysis of relative gene expression data using real-time quantitative PCR and the 2(−Delta Delta C(T)) method. Methods 25:402–408

    CAS  PubMed  Google Scholar 

  • Loman NJ, Misra RV, Dallman TJ, Constantinidou C, Gharbia SE, Wain J, Pallen MJ (2012) Performance comparison of benchtop high-throughput sequencing platforms. Nat Biotechnol 30:434–439

    CAS  PubMed  Google Scholar 

  • Maere S, Heymans K, Kuiper M (2005) BiNGO: a Cytoscape plugin to assess overrepresentation of gene ontology categories in biological networks. Bioinformatics 21:3448–3449

    CAS  PubMed  Google Scholar 

  • Marques AC, Ponting CP (2009) Catalogues of mammalian long noncoding RNAs: modest conservation and incompleteness. Genome Biol 10:R124

    PubMed  PubMed Central  Google Scholar 

  • Mazzoccoli G, Castellana S, Carella M et al (2017) A primary tumor gene expression signature identifies a crucial role played by tumor stroma myofibroblasts in lymph node involvement in oral squamous cell carcinoma. Oncotarget 8:104913

    PubMed  PubMed Central  Google Scholar 

  • Nie Y, Li S, Zheng X, Chen W, Li X, Liu Z, Hu Y, Qiao H, Qi Q, Pei Q, Cai D, Yu M, Mou C (2018) Transcriptome reveals long non-coding RNAs and mRNAs involved in primary wool follicle induction in carpet sheep fetal skin. Front Physiol 9:446

    PubMed  PubMed Central  Google Scholar 

  • Pandey GK, Mitra S, Subhash S, Hertwig F, Kanduri M, Mishra K, Fransson S, Ganeshram A, Mondal T, Bandaru S, Östensson M, Akyürek LM, Abrahamsson J, Pfeifer S, Larsson E, Shi L, Peng Z, Fischer M, Martinsson T, Hedborg F, Kogner P, Kanduri C (2014) The risk-associated long noncoding RNA NBAT-1 controls neuroblastoma progression by regulating cell proliferation and neuronal differentiation. Cancer Cell 26:722–737

    CAS  PubMed  Google Scholar 

  • Papa F, Siciliano RA, Inchingolo F, Mazzeo MF, Scacco S, Lippolis R (2018) Proteomics pattern associated with gingival oral squamous cell carcinoma and epulis: a case analysis. Oral Sci Int 15:41–47

    Google Scholar 

  • Pertea M, Pertea GM, Antonescu CM, Chang T-C, Mendell JT, Salzberg SL (2015) StringTie enables improved reconstruction of a transcriptome from RNA-seq reads. Nat Biotechnol 33:290–295

    CAS  PubMed  PubMed Central  Google Scholar 

  • Pertea M, Kim D, Pertea GM, Leek JT, Salzberg SL (2016) Transcript-level expression analysis of RNA-seq experiments with HISAT, StringTie and Ballgown. Nat Protoc 11:1650–1667

    CAS  PubMed  PubMed Central  Google Scholar 

  • Quail MA, Smith M, Coupland P et al (2012) A tale of three next generation sequencing platforms: comparison of Ion Torrent, Pacific Biosciences and Illumina MiSeq sequencers. BMC Genomics 13:341

    CAS  PubMed  PubMed Central  Google Scholar 

  • Rezende A, Naves P (1975) Horn core cancer in a zebu cow, imported to Brazil. Pesq Agropec Bras Série Veterinária 10:41–44

    Google Scholar 

  • Rinn JL, Chang HY (2012) Genome regulation by long noncoding RNAs. Annu Rev Biochem 81:145–166

    CAS  PubMed  Google Scholar 

  • Robles A, Ryan B (2015) KRT81 miR-SNP rs3660 is associated with risk and survival of NSCLC. Ann Oncol 27:360–361

    PubMed  PubMed Central  Google Scholar 

  • Rong C, Meinert É, Hess J (2018) Estrogen receptor signaling in radiotherapy: from molecular mechanisms to clinical studies. Int J Mol Sci 19:713

    PubMed Central  Google Scholar 

  • Roth L, Srivastava S, Lindzen M et al (2018) SILAC identifies LAD1 as a filamin-binding regulator of actin dynamics in response to EGF and a marker of aggressive breast tumors. Sci Signal 11:eaan0949

    PubMed  Google Scholar 

  • Savita J, Kumar BY, Nayak VN (2018) Matrix metalloproteinases in oral squamous cell carcinoma-a review. J Adv Clin Res Insights 5:124–126

    Google Scholar 

  • Schmitt AM, Chang HY (2016) Long noncoding RNAs in cancer pathways. Cancer Cell 29:452–463

    CAS  PubMed  PubMed Central  Google Scholar 

  • Shi J, Yan B, Lou X, Ma H, Ruan S (2017) Comparative transcriptome analysis reveals the transcriptional alterations in heat-resistant and heat-sensitive sweet maize (Zea mays L.) varieties under heat stress. BMC Plant Biol 17:26

    PubMed  PubMed Central  Google Scholar 

  • Shiba D, Terayama M, Yamada K, Hagiwara T, Oyama C, Tamura-Nakano M, Igari T, Yokoi C, Soma D, Nohara K, Yamashita S, Dohi T, Kawamura YI (2018) Clinicopathological significance of cystatin A expression in progression of esophageal squamous cell carcinoma. Medicine 97:e0357

    CAS  PubMed  PubMed Central  Google Scholar 

  • Silveira NJ, Varuzza L, Machado-Lima A et al (2008) Searching for molecular markers in head and neck squamous cell carcinomas (HNSCC) by statistical and bioinformatic analysis of larynx-derived SAGE libraries. BMC Med Genet 1:56

    Google Scholar 

  • Szklarczyk D, Franceschini A, Wyder S et al (2014) STRING v10: protein–protein interaction networks, integrated over the tree of life. Nucleic Acids Res 43:D447–D452

    PubMed  PubMed Central  Google Scholar 

  • Taft RJ, Pheasant M, Mattick JS (2007) The relationship between non-protein-coding DNA and eukaryotic complexity. Bioessays 29:288–299

    CAS  PubMed  Google Scholar 

  • Tang Q, Zhang H, Kong M, Mao X, Cao X (2018) Hub genes and key pathways of non-small lung cancer identified using bioinformatics. Oncol Lett 16:2344–2354

    PubMed  PubMed Central  Google Scholar 

  • Teschendorff AE, Lee SH, Jones A, Fiegl H, Kalwa M, Wagner W, Chindera K, Evans I, Dubeau L, Orjalo A, Horlings HM, Niederreiter L, Kaser A, Yang W, Goode EL, Fridley BL, Jenner RG, Berns EMJJ, Wik E, Salvesen HB, Wisman GBA, van der Zee AGJ, Davidson B, Trope CG, Lambrechts S, Vergote I, Calvert H, Jacobs IJ, Widschwendter M (2015) HOTAIR and its surrogate DNA methylation signature indicate carboplatin resistance in ovarian cancer. Genome Med 7:108

    PubMed  PubMed Central  Google Scholar 

  • Toivola DM, Boor P, Alam C, Strnad P (2015) Keratins in health and disease. Curr Opin Cell Biol 32:73–81

    CAS  PubMed  Google Scholar 

  • Toss A, Cristofanilli M (2015) Molecular characterization and targeted therapeutic approaches in breast cancer. Breast Cancer Res 17:60

    PubMed  PubMed Central  Google Scholar 

  • Trapnell C, Robert A, Goff L et al (2012) Differential gene and transcript expression analysis of RNA-seq experiments with TopHat and Cufflinks. Nat Protoc 7:562–578

    CAS  PubMed  PubMed Central  Google Scholar 

  • Tsuchiya KD, Davis B, Gardner RA (2017) Is intrachromosomal amplification of chromosome 21 (iAMP21) always intrachromosomal? Cancer Genet 218:10–14

    PubMed  Google Scholar 

  • Vadakekolathu J, Al-Juboon SIK, Johnson C et al (2018) MTSS1 and SCAMP1 cooperate to prevent invasion in breast cancer. Cell Death Dis 9:344

    PubMed  PubMed Central  Google Scholar 

  • Wang Y, Jin L (2018) miRNA-145 is associated with spontaneous hypertension by targeting SLC7A1. Exp Ther Med 15:548–552

    CAS  PubMed  Google Scholar 

  • Wang L, Park HJ, Dasari S, Wang S, Kocher J-P, Li W (2013) CPAT: Coding-Potential Assessment Tool using an alignment-free logistic regression model. Nucleic Acids Res 41:e74–e74

    CAS  PubMed  PubMed Central  Google Scholar 

  • Weikard R, Hadlich F, Kuehn C (2013) Identification of novel transcripts and noncoding RNAs in bovine skin by deep next generation sequencing. BMC Genomics 14:789

    CAS  PubMed  PubMed Central  Google Scholar 

  • Wickham H (2010) ggplot2: elegant graphics for data analysis. J Stat Softw 35:65–88

    Google Scholar 

  • Xiong Z, Ren S, Chen H, Liu Y, Huang C, Zhang YL, Odera JO, Chen T, Kist R, Peters H, Garman K, Sun Z, Chen X (2018) PAX9 regulates squamous cell differentiation and carcinogenesis in the oro-oesophageal epithelium. J Pathol 244:164–175

    CAS  PubMed  Google Scholar 

  • Yang B, Jiao B, Ge W, Zhang X, Wang S, Zhao H, Wang X (2018) Transcriptome sequencing to detect the potential role of long non-coding RNAs in bovine mammary gland during the dry and lactation period. BMC Genomics 19:605

    PubMed  PubMed Central  Google Scholar 

  • Ye J, Coulouris G, Zaretskaya I, Cutcutache I, Rozen S, Madden TL (2012) Primer-BLAST: a tool to design target-specific primers for polymerase chain reaction. BMC Bioinf 13:134

    CAS  Google Scholar 

  • Zhang X, Roger G, Ali M et al (2010) Maternally expressed gene 3, an imprinted noncoding RNA gene, is associated with meningioma pathogenesis and progression. Cancer Res. https://doi.org/10.1158/0008-5472.CAN-09-3885

    CAS  PubMed  PubMed Central  Google Scholar 

  • Zhang J, Le TD, Liu L, Li J (2018) Inferring and analyzing module-specific lncRNA–mRNA causal regulatory networks in human cancer. Brief Bioinform. https://doi.org/10.1093/bib/bby008

    Google Scholar 

  • Zheng Y, Zhao G, Xu B, Liu C, Li C, Zhang X, Chang X (2016) PADI4 has genetic susceptibility to gastric carcinoma and upregulates CXCR2, KRT14 and TNF-α expression levels. Oncotarget 7:62159

    PubMed  PubMed Central  Google Scholar 

  • Zheng X, Ning C, Zhao P et al (2018) Integrated analysis of long noncoding RNA and mRNA expression profiles reveals the potential role of long noncoding RNA in different bovine lactation stages. J Dairy Sci 101:11062–11073

    Google Scholar 

  • Zombori T, Cserni G (2018) Immunohistochemical analysis of the expression of breast markers in basal-like breast carcinomas defined as triple negative cancers expressing keratin 5. Pathol Oncol Res 24:259–267

    CAS  PubMed  Google Scholar 

  • Zubaidy AJ (1976) Horn cancer in cattle in Iraq. Vet Pathol 13:453–454

    CAS  PubMed  Google Scholar 

Download references

Funding

We thank the Department of Biotechnology (DBT), Government of India, New Delhi, India, for providing financial support (Grant Letter No. BT/PR13649/AAQ/1/627/2015) for this project.

Author information

Authors and Affiliations

Authors

Contributions

PHS and KJP participated in sample collection, library preparation, and sequencing; PHS analyzed data and drafted manuscript; PGK conceptualized actual research project, participated in sample collection, and improved manuscript; SJJ helped in data analysis and improved manuscript; CGJ provided all facilities to carryout research. All authors read and approved the final manuscript.

Corresponding author

Correspondence to Prakash G. Koringa.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Ethics approval and consent to participate

All animal ethics guidelines were followed and complied as per permission from Ethical Committee norms and letter No. IAEC 525-2015.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

Figure S1

Heatmap showing expression level based upon FPKM value for A) Genes and B) LncRNAs. (PNG 348 kb)

High resolution image (TIF 8077 kb)

Figure S2

Protein-protein interaction analysis of significant differentially expressed genes. (PNG 105 kb)

High resolution image (TIF 5077 kb)

Figure S3

Gene ontology analysis based upon significant differentially expressed genes. (PNG 220 kb)

High resolution image (TIF 5589 kb)

Figure S4

Interaction between different gene ontology terms identified based upon significant differentially expressed genes. (PNG 303 kb)

High resolution image (TIF 5344 kb)

Figure S5

Interaction between different gene ontology terms identified based upon target genes of lncRNAs. (PNG 249 kb)

High resolution image (TIF 7373 kb)

Figure S6

Comparison of RT-qPCR and transcriptome analysis results of selected genes and lncRNAs based upon their log2 fold change value. (PNG 86 kb)

High resolution image (TIF 5257 kb)

ESM 1

(XLSX 1092 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sabara, P.H., Jakhesara, S.J., Panchal, K.J. et al. Transcriptomic analysis to affirm the regulatory role of long non-coding RNA in horn cancer of Indian zebu cattle breed Kankrej (Bos indicus). Funct Integr Genomics 20, 75–87 (2020). https://doi.org/10.1007/s10142-019-00700-4

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10142-019-00700-4

Keywords

Navigation