Skip to main content
Log in

Down-Regulation of SIRT1 Expression by mir-23b Contributes to Lipid Accumulation in HepG2 Cells

  • Original Article
  • Published:
Biochemical Genetics Aims and scope Submit manuscript

Abstract

Non-alcoholic fatty liver disease is one of the main causes of chronic liver disease and therefore is currently considered a major public health problem. Sirtuin 1 (SIRT1) is an NAD-dependent deacetylase enzyme that contributes in the regulation of metabolic processes and protects against lipid accumulation in hepatocytes. Its expression is potentially regulated by microRNAs which attach to the 3′ untranslated region (3′-UTR) of their target mRNA. HepG2 cells were incubated by glucose to induce lipid accumulation and were subsequently transfected with mir-23b mimic and inhibitor. Real-time PCR was used for measuring the expression of mir-23b and SIRT1 mRNA. Cell survival assay and intracellular triglyceride measurement were performed using colorimetric methods. Determination of SIRT1 protein level and activity were done by western blot and fluorometric analysis, respectively. The interaction of miR-23b with 3′-UTR of SIRT1 mRNA was confirmed by dual luciferase. miR-23b mimic inhibited gene and protein expression of SIRT1, while the inhibitor of miR-23b significantly elevated the expression levels of SIRT1 mRNA and protein. The results showed that the 3′-UTR of SIRT1 mRNA is a direct target for miR-23b. The intracellular triglyceride level was increased following the inhibition of SIRT1 in transfected HepG2 cell by miR-23b mimic. Cell viability was decreased in response to miR-23b upregulation compared to control cells. miR-23b reduces the expression and activity of SIRT1 and therefore may be a causative factor in the enhancement of lipid accumulation in HepG2 cells.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Abbreviations

NAFLD:

non-alcoholic fatty liver disease

NAD:

nicotinamide adenine dinucleotide

SIRT1:

silent information regulation homology 1

UTR:

untranslated region

MRE:

microRNA response elements

References

  • Adlakha Y et al (2013) Pro-apoptotic miRNA-128-2 modulates ABCA1, ABCG1 and RXRα expression and cholesterol homeostasis. Cell Death Dis 4(8):e780

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Albhaisi S, Sanyal A (2018) Recent advances in understanding and managing non-alcoholic fatty liver disease. F1000Research, vol. 7

  • Alisi A et al (2011) Mirnome analysis reveals novel molecular determinants in the pathogenesis of diet-induced nonalcoholic fatty liver disease. Lab Invest 91(2):283

    Article  CAS  PubMed  Google Scholar 

  • Arner P, Kulyté A (2015) MicroRNA regulatory networks in human adipose tissue and obesity. Nat Rev Endocrinol 11(5):276

    Article  CAS  PubMed  Google Scholar 

  • Bala S, Marcos M, Szabo G (2009) Emerging role of microRNAs in liver diseases. World J Gastroenterol 15(45):5633

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Chalasani N et al (2018) The diagnosis and management of nonalcoholic fatty liver disease: practice guidance from the American Association for the Study of Liver Diseases. Hepatology 67(1):328–357

    Article  PubMed  Google Scholar 

  • Cohen HY et al (2004) Calorie restriction promotes mammalian cell survival by inducing the SIRT1 deacetylase. Science 305(5682):390–392

    Article  CAS  Google Scholar 

  • Ding R-B, Bao J, Deng C-X (2017) Emerging roles of SIRT1 in fatty liver diseases. Int J Biol Sci 13(7):852

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Esau C et al (2006) miR-122 regulation of lipid metabolism revealed by in vivo antisense targeting. Cell Metab 3(2):87–98

    Article  CAS  PubMed  Google Scholar 

  • Feng YY et al (2014) Aberrant hepatic microRNA expression in nonalcoholic fatty liver disease. Cell Physiol Biochem 34(6):1983–1997

    Article  CAS  PubMed  Google Scholar 

  • Feng T et al (2018) SIRT1 activators and their effects on atherosclerosis progression. Cardiol Res Cardiovasc Med. https://doi.org/10.29011/CRCM-138.000038

    Article  Google Scholar 

  • Fernández-Hernando C (2013) Emerging role of microRNAs in the regulation of lipid metabolism. Hepatology 57(2):432–434

    Article  CAS  PubMed  Google Scholar 

  • Ferrante SC et al (2015) Adipocyte-derived exosomal miRNAs: a novel mechanism for obesity-related disease. Pediatr Res 77(3):447–454

    Article  CAS  PubMed  Google Scholar 

  • Frescas D, Valenti L, Accili D (2005) Nuclear trapping of the forkhead transcription factor FoxO1 via sirt-dependent deacetylation promotes expression of glucogenetic genes. J Biol Chem 280(21):20589–20595

    Article  CAS  PubMed  Google Scholar 

  • Grossi I et al (2017) Clinical and biological significance of miR-23b and miR-193a in human hepatocellular carcinoma. Oncotarget 8(4):6955–6969

    Article  PubMed  Google Scholar 

  • Guarente L, Picard F (2005) Calorie restriction—the SIR2 connection. Cell 120(4):473–482

    Article  CAS  PubMed  Google Scholar 

  • He J et al (2016) Analysis of miRNAs and their target genes associated with lipid metabolism in duck liver. Sci Rep 6:27418

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hou X et al (2008) SIRT1 regulates hepatocyte lipid metabolism through activating AMP-activated protein kinase. J Biol Chem 283(29):20015–20026

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kane AE, Sinclair DA (2018) Sirtuins and NAD+ in the development and treatment of metabolic and cardiovascular diseases. Circ Res 123(7):868–885

    Article  CAS  PubMed  Google Scholar 

  • Kemper JK et al (2009) FXR acetylation is normally dynamically regulated by p300 and SIRT1 but constitutively elevated in metabolic disease states. Cell Metab 10(5):392–404

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lazo M et al (2013) Prevalence of nonalcoholic fatty liver disease in the United States: the Third National Health and Nutrition Examination Survey, 1988–1994. Am J Epidemiol 178(1):38–45

    Article  PubMed  PubMed Central  Google Scholar 

  • Li Y et al (2011) Hepatic overexpression of SIRT1 in mice attenuates endoplasmic reticulum stress and insulin resistance in the liver. FASEB J 25(5):1664–1679

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Li X (2013) SIRT1 and energy metabolism. Acta Biochim Biophys Sin 45(1):51–60

    Article  CAS  PubMed  Google Scholar 

  • Liu Y et al (2008) A fasting inducible switch modulates gluconeogenesis via activator/coactivator exchange. Nature 456:269

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lu T-M et al (2014) Downregulation of Sirt1 as aging change in advanced heart failure. J Biomed Sci 21(1):57–57

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Matteoni CA et al (1999) Nonalcoholic fatty liver disease: a spectrum of clinical and pathological severity. Gastroenterology 116(6):1413–1419

    Article  CAS  PubMed  Google Scholar 

  • Najafi-Shoushtari SH et al (2010) MicroRNA-33 and the SREBP host genes cooperate to control cholesterol homeostasis. Science 328(5985):1566–1569

    Article  CAS  Google Scholar 

  • Nassir F, Ibdah JA (2016) Sirtuins and nonalcoholic fatty liver disease. World J Gastroenterol 22(46):10084

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Purushotham A et al (2009) Hepatocyte-specific deletion of SIRT1 alters fatty acid metabolism and results in hepatic steatosis and inflammation. Cell Metab 9(4):327–338

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Reznick RM et al (2007) Aging-associated reductions in AMP-activated protein kinase activity and mitochondrial biogenesis. Cell Metab 5(2):151–156

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Rogler CE et al (2017) Knockdown of miR-23, miR-27, and miR-24 alters fetal liver development and blocks fibrosis in mice. Gene Expr 17(2):99–114

    Article  CAS  PubMed  Google Scholar 

  • Satapathy SK, Sanyal AJ (2015) Epidemiology and natural history of nonalcoholic fatty liver disease. In: Seminars in liver disease. Thieme Medical Publishers, Stuttgart

    Google Scholar 

  • Schueller F et al (2018) The role of miRNAs in the pathophysiology of liver diseases and toxicity. Int J Mol Sci 19(1):261

    Article  CAS  PubMed Central  Google Scholar 

  • Stefanowicz M et al (2018) Adipose tissue, but not skeletal muscle, sirtuin 1 expression is decreased in obesity and related to insulin sensitivity. Endocrine 60(2):263–271

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sun Y et al (2007) Downregulation of sirt1 by antisense oligonucleotides induces apoptosis and enhances radiation sensitization in A549 lung cancer cells. Lung Cancer 58(1):21–29

    Article  PubMed  Google Scholar 

  • Sun YN et al (2015) Inhibition of microRNA-9-3p reduces lipid accumulation in HepG2 cells by targeting the expression of sirtuin type 1. Mol Med Rep 12(5):7742–7748

    Article  CAS  PubMed  Google Scholar 

  • Vickers KC et al (2013) The complexity of microRNA function and the role of isomiRs in lipid homeostasis. J Lipid Res 54(5):1182-1191

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Vickers MH (2014) Early life nutrition, epigenetics and programming of later life disease. Nutrients 6(6):2165–2178

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Xiong W et al (2017) Circulatory microRNA 23a and microRNA 23b and polycystic ovary syndrome (PCOS): the effects of body mass index and sex hormones in an Eastern Han Chinese population. J Ovarian Res 10:10

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Yang Z, Cappello T, Wang L (2015) Emerging role of microRNAs in lipid metabolism. Acta Pharm Sin. B 5(2):145–150

    Article  PubMed  PubMed Central  Google Scholar 

  • Zang M et al (2006) Polyphenols stimulate AMP-activated protein kinase, lower lipids, and inhibit accelerated atherosclerosis in diabetic LDL receptor–deficient mice. Diabetes 55(8):2180–2191

    Article  CAS  PubMed  Google Scholar 

  • Zhang P et al (2017) Beraprost sodium, a prostacyclin analogue, reduces fructose-induced hepatocellular steatosis in mice and in vitro via the microRNA-200a and SIRT1 signaling pathway. Metab Clin Exp 73:9–21

    Article  CAS  PubMed  Google Scholar 

  • Zhang Y et al (2017) Emerging roles for microRNAs in diabetic microvascular disease: novel targets for therapy. Endocrinol Rev 38(2):145–168

    Article  CAS  Google Scholar 

  • Zhao S et al (2016) miR-23b-3p induces the cellular metabolic memory of high glucose in diabetic retinopathy through a SIRT1-dependent signalling pathway. Diabetologia 59(3):644–654

    Article  CAS  PubMed  Google Scholar 

  • Zullo A et al (2018) Sirtuins as mediator of the anti-ageing effects of calorie restriction in skeletal and cardiac muscle. Int J Mol Sci 19(4):928

    Article  CAS  PubMed Central  Google Scholar 

Download references

Acknowledgements

This research has been extracted from the Ph.D. thesis of Mohammad Borji and was supported by Grant Number 94-01-01-10596 from Vice-chancellor for Research Affairs of Shiraz University of Medical Sciences, Shiraz, Iran.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Mitra Nourbakhsh or Sayed Mohammad Shafiee.

Ethics declarations

Conflict of Interest

The authors declare that they have no conflict of interest.

Ethical Approval

This article does not contain any studies with human participants or animals performed by any of the authors.

Informed Consent

This article does not contain any studies with human participants and there is no need for informed consent.

Electronic Supplementary Material

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 250 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Borji, M., Nourbakhsh, M., Shafiee, S.M. et al. Down-Regulation of SIRT1 Expression by mir-23b Contributes to Lipid Accumulation in HepG2 Cells. Biochem Genet 57, 507–521 (2019). https://doi.org/10.1007/s10528-019-09905-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10528-019-09905-5

Keywords

Navigation